audiokinetic

————
e :::-
\Y\ —
_ ——
—————
N —_—
s —
— —

The Wwise Project
Adventure

A Handbook for Creating Interactive Audio Using
Wwise

Damian Kastbauer

2014.1.1

Q.
%
X
‘!

%%

RARREXEISH

N

The Wwise Project Adventure

The Wwise Project Adventure

A Handbook for Creating Interactive Audio Using Wwise

Damian Kastbauer

Wwise 2014.1.1 Build 5179
Copyright © 2014 Audiokinetic, Inc. All rights reserved.

Patents pending
Whwise is a product of Audiokinetic, Inc..

This document is supplied as a guide for the Wwise® product. This guide and the software that it describes is furnished under license and may not
be duplicated, reproduced, modified, stored or transmitted, in whole or in part, in any form or by any means, other than as expressly permitted
by the terms of such license or with the prior written permission of Audiokinetic, Inc.. The content of this guide is furnished for information
purposes only, and its content and all features and specifications referred to therein are subject to change without notice. Reasonable care has
been taken in preparing the information contained in this document, however, Audiokinetic, Inc.. disclaims all representations, warranties and
conditions, whether express, implied or arising out of usage of trade or course of dealing, concerning this guide and assumes no responsibility or
liability for any losses or damages of any kind arising out of the use of this guide or of any error or inaccuracy it may contain, even if Audiokinetic,
Inc.. has been advised of the possibility of such loss or damage. This guide is protected by Canadian copyright law and in other jurisdictions by
virtue of international copyright treaties.

Wwise® is a registered trade-mark of Audiokinetic, Inc.. Actor-mixer, Master-Mixer, SoundFrame, Soundcaster, Randomizer are all trademarks of
Audiokinetic, Inc.. All other trademarks, trade names or company names referenced herein are the property of their respective owners.

Table of Contents

The Adventure BEZINSccccceeeererieiriiieieteneseeeree ettt ix
1. Setting the Ambient Stagec.coeeiriiiiiiiiiicee e 1
OVEIVIEW ettt 2
Building the FOundationcccoceevieiiiiiineneninieeneceeceeeseseee e 3
Importing Audio Filescoeveriririniniiiiiieeeeeeeeeeeeeeen 3
Setting Up a Looping SOUNdccceeereeiririeniinienienenenceceeeeeeeeenens 6
Adding Detail to a Developing Soundscapeccccoceeeeerereeereeneenuennens 11
Randomizing Propertiescocceveeeeereereenienieneneneneeeeeeseeseennens 11
Using the Blend Container to Combine Soundsccccceeveuennee. 13
Weighted Randomization Using the Silence Plug-inc..c......... 13
Randomized Positioning of Soundsccceeevevenereeienneecicnnennen. 15
Creating the Combined Daytime Forest Ambient Combination
.. 18
SECHION SUMIMATY .ueveiuieeiieeieeriienteenite et et e st e e ssee s e e s e e e sseesanes 18
Introduction of a Day and Night Cyclec..coceeeiiiiiiieiininininereccee 19
Establishing a Game Parameterccccoccevereeieeiienienenieneneneceeeeeenens 19
Creating the Ambient SYStemcoceevereeerieriienenieneneneneeeeeeeeeeeens 20
Using the Blend Track Editorccceoevineneniiniiiicncneneneeeceeeenee 20
Setting Container Order within Blend Tracksccccocevevenencninncnnnen. 23
Preparing the EVentcccocvviiiiiiiiiininininecceeeeseeeseee e 25
Harnessing Event ACtIONScccecerviiviiinieniiinenieniciicicceeeeese e 26
Creating WOTK URNItSccevererirerieieieietesteneeeneeeeeeee e 29
SECHION SUMIMATY .uvverreeriieeieenierieeete et e seesre e st e e et e seeesseesaee s et e sseesanees 34
Sound Emitters in the Game Worldcccoceeviiiiiininininnirccccicene, 35
Creating Attenuation ShareSetsccoceverreririerneerieneneneneeeneeeeeenee 35
Creating and Establishing Generalized Attenuationsc.cecccevevuennne. 36
Subscribing Sound Objects to an Attenuationceceeceeeeereeeeeenennes 37
Using Spread as Part of an Attenuationcecceceveeerereeeeneeneenncnnennes 38
Using Low Pass Filter as Part of an Attenuationc..cecceceeereeveeeenenne. 41
Adjusting Cone Attenuation Propertiescccceeeverenerereeeeeeneennenne 42
SECtION SUMIMATY .ueveritieiieeieeriientee e et et e st e st e s e e e s e sseesanes 43
SoundSeed AIr “WINdcccoevierininininieieeeeenee e 44
SoundSeed Wind - Deflectorsccceeuerererenereneenienienieneneneeeeeeeens 46
SoundSeed Wind - Propertiesccceeueeveererieeneeniennieneenenreeneeneeeseennes 47
SoundSeed Wind - RTPCcceoiviririiiiieiecenereeenceeeeeeeseerenaens 49
AmDbIent SUMIMATY ...cevviiiiiiienieieriereeeete ettt ste e e e e e nee 50
Ambient Additional RESOUICEScc.ceverueemeririeieieieneneneeerteeeeeee e 51
2. Establishing Charactercocoeeveriieiiiiininineneneeeeeeeeeceseeeee e 52
OVEIVIEW ettt 53
Footsteps and Movement - Establishing Needsccccecevereninencniniennennne 54
SIMPLE STEPS vttt ettt 54
Switching System INtroductionccceceeeevereecienienenineneneeeeeeeeeeeeee e 56

il

The Wwise Project Adventure

Defining Step TYPE couveeveriiiiiieteeeteeeertest et 57
Defining SUrface TYPEcoceeueriereriieniiiieteeteeeeenteeee et 60
Defining Character TYPeccceeveerieririenienieieniereeieseeee et 62

All Together NOW ...cceeviiriiiirierieerteteeetese ettt 63
MOVEIMENT ..coviiiiiiiiiiiiiiii i 64
Defining Armor TYPe ..ccceevverieniiiiiierteeeteseereeteie ettt 64
Creating the Movement EVentccccceeevierienenienienennicnecneneeeeeeeen 65
Character SUMMATYccceevteruerrieriinieteeiene ettt et see st s s e sseessesaeens 67
Character Additional RESOUICEScccevviruiririiiiiiiiieicnincneeeeecrecrenne 69
3. Preparing for COmDALccevuerierinininirtetet ettt 70
OVEIVIEW ..ottt s 71
Defining Sound Sets for Weapon TYPesccccecereeverrienieneniieneeneneeneenenee 72
SoundSeed Air - Whooshcccoiiiiiiiiiiiiiiiiiiicccee 73
Understanding IMPAaCt ...ccc.eeeevuervierieniniienieneeienteeteteetesie ettt 78
Defining Weapon TYPe ...cceevveeieriirerienieeeteneeeneesee et 78
Weapon Impact Systemcccoecveviiiiiiiiiiiniiiiiiiiiiciccececece 79
Attenuations for Player vs. NPCcccccociiiiriiniiininiinieeeeeeeeeeeeeee e 81
High ALRT ettt 81
Listener Considerationsccceeverieirinienienieneneneneee e 81
Combat SUMMATY ...ooviiiiiiiiieietceet et 83
Combat Additional ReSOUICEScccceevuiriririiiiiiiiiiierccceee 84
4. MaKING MAGIC .eeuveruiieiiiiiiieniteiteteeitete ettt ettt et st sbe st saeesbe s e 85
OVEIVIEW ..ottt 86
Summing and Layering with Blend Containersc..ccocceverveereenernieneennennee. 87
Creating Distance-Based Blend Tracksccccecevvieveriienieninneneenenieneeeene 88
Setting up a Game Parameterccccceecverviiiiieiiieniienieeneceece e 88
Crossfading Between Containers on a Blend Trackccccceevivinininns 91
SeCtiON SUMIMATY evveriiiiieiiieie ettt et 92
Real-Time Parameter Control (RTPC)coviiiivveiiiiiieiiieieeeeeeeeee e 93
Using Real-Time Effectscccccoerviiriiriiiiinieieienteecccececeesee e 95
Unleashing Dynamic Synthesisccoceververienensienienenieneeeeeeseeieseenees 99
WWise SYNth ONe ...coeeviiiiiniiiiienicereteeeteseee ettt 99
MOAULALOTS ..ottt 103
Modulator LFO ...cc.coiviiiiiiiiiciiicicceeenteeeerere e 103
Modulation Envelopecoceeverieniiienieninienieneneeneeeeeeenee 108

MagIC SUMMATY ..eeiiiiiiiieiiiieeeieete ettt ettt sne e 114
Magic Additional RESOUICESceevueruierieriieniiiirieeiiereetenecee et 115
5. Dialogue Decisions and Language LeSSOnsccccecveverveereenreeneennienenseeneenneennes 116
L@ o 1 PP 117
Getting Started with Dialogue and Non-Verbal Vocalizationsc...c....... 118
Adding Additional Languagesc..cceceevervierienennienieninieneeseere st 122
Dynamic DiIaloguecocuevviriirieniiienieienieeteeeeeee et 124
Cinematic Dialogue Placementccccoveevierieninnieniienenienieneeieneeeseeeeen 126
VOICE SUMMATY ..eviiiiiiiiiiiieiteeeeee ettt 128
Voice Additional ReSOUICESccevviviiniininiiiiiiiiicicicencee e 129

iv

The Wwise Project Adventure

6. Unlocking the User INterfacecoceveveerererenenineeieeesieserieneeeeee et 130
L@ o 1 TR 131
Creating a Simple Menu Select Soundccceeveviineniienienenneneneeeenene 132
Defining 2D Sound POSItiONINgccceeverveerieneriienienieeieneenenre e 134
The Complex Negotiation of Pausecccceceevvereiveriienienennenecenieeeeeenee 135

Pause - Defining the Scenarioc.cccceevereeveriienensenieeneceneeseeeene 135
Pausing the Gameccoceviiiiriiiniiiiiitceceee e 136
Resuming the Gamecccoevveveriiiniininienicenestceeee e 137
User Interface SUMMATYcccoovevueriieriirieniienierentestereetesre et seesneeas 139
User Interface Additional ReSOUICescccoeevieiriiiiiiiiiniiniininceccrcee 140

7. AdVentures in MUSICcoeriiiiiiiiiiiiiniiienieiec e 141
L@ o 1 PR 142
Starting With the Interactive Music Hierarchycc.ccccoveviivinncnicnennecnnen. 143

Preparing the Contentcccceeveriiiinienienenieneceeteseeeeeeee e 143
The Horizontal APproachcccccoveiiiiiiiiniiniicnicceeeeeceseeeee 144
Creating the Ambient Music Segmentcccceevverviereenerneeneenenneeneenn 144
Grooming the Trackscecceevieriiiiniiniieeieeceeeeeeeeee e 147
Dynamic Dangerc.cccoevueeeiiiiiiiiiiieeieneeeeeeeeeeee e 149
Adding RTPC t0 Tracks ..c...ccceeveerieniinienienierienieetcieeeeseceeeee et 149
Auditioning RTPC ..ottt 151
Looping a MUSIC SEZMENt ..c..eeviirvuiirieiiiiiieeieeieeieeseeereee e 152
SeCtioN SUMMATY ...eeiriiiiiiiiiiiieeieee ettt 152
The Vertical APProachcoceoeeverieniiiinieniiieceeeeeeeteee e 153
Groups and Behaviorsccoceeeevieriieninienieieieeeceeeseeeeeeeeeene 153
Sequencing Groups in the Music Playlist EAitorcccccoceeverieniennenne. 154
SeCtioN SUMMATY ...eeiiiiiiiiiiiiiiieeie ettt e 156
Using States to Switch Between Music TyPesccceceeeveeveereenernieneeniensiennenn 157
Defining Interactive Music Transitionsc..cceceevverveerernrenieeneeneenieenenseennees 159
Authoring Transitionsceceeceeeeerieriiererienteseete st eeesre e seenneeas 160
Defining Transition Behaviorccccevvveviivinieniniinicniiecicneeenens 160
Transitioning from Ambient to Action MUSICcccecveviievviniinenenennens 161
Transitioning from Action to Ambient MUsSICccceceevviviivriniinencnennens 163
SeCtioN SUMMATY ...eeirviiiiiiiiiiieeie ettt e 165
MUSIC SUIMIMATY .eiiiiiiiiiiiieiiiiieeieeteere e s snee e 166
Music Additional RESOUICESc.coevuiririiiiiiiiiiieneneceecee e 168

8. Adventures in MIDIccccoiiiiiininiiiiiiiiicrcrceene e 169
L@ o 1 PR 170
Importing MIDI FIIES ...cc.cocveiiiriiiinienieieniereeeeteeeteeeeee et 171

SeCtioN SUMMATY ...eeeiiiiiiiiiiiiieieee ettt 175
Setting up Wwise Synth Oneccccceceeviriiiniineniienienenieneceeeeecsee e 176
Adventures in SyNthesisc..ccocerveriiririeniienenencecee e 177
SeCtioN SUMMATY ...eeiriiiiiiiiiiieeie ettt 180
Connecting MIDI & SOUNA ...cc.eivuirieniiiiinieriteieeieeceresee et 181
Importing the Individual MIDI Trackscccccceveviriiiiiiiiiiiniininenennns 181
Music Segment MIDI Propertiesccocceeveerverieeniienneensenneeeneeeeeee 183

The Wwise Project Adventure

Sound Object MIDI Propertiescccceeveereenuereeneenenneeneeneeneeneensenns 184
SeCtioN SUMMATY ...eeiiiiiiieiiiiiieereee ettt 187
MIDI SUMMATY ..ooiiiiiiiiiiiiiiiirerere it are s 188
Music Additional RESOUICEScccevuiririiiiiiiiiinienencecrecce e 189
9. Mastering the MIX ...c.cecuererrierieniriienieriteteet ettt ettt sreesaeseesneesreene 190
OVEIVIEW ..ottt 191
Routing with Audio BUSSeSccceevueriinieriieniiienienecieneeeeeeteeee e 192
Routing with Auxiliary BUSSescccceeeevuerrieniiieniienieierieneeeereseeee e 194
Using AUXIlIary SENAScceevverieniirierieniteientesteie ettt 196
User-Defined Auxiliary Sendscoceceeerieienieneneneneneneneeeeeeeeees 197
Game-Defined Auxiliary Sendsccccevereeveriieninnenneneeneneeneeeenes 199
States and MixX Snapshotscccoveriiiiiiiniinneeeee 201
Auto-Ducking vs. Side-Chainingcccceververienennenieninieneeseeieseeseeeeens 203
AULO-DUCKING ..eviiiiieiieiiiitceteeee ettt 203
Side-Chaining ...ccceeveeeiriirierierieerteeee ettt 204
Mixing With RTPCooiiiiiiiiiiiiieeteteenetereeeest et 204
Using Effects in the Master-MIXercccceverreererrieniieninnieneenensieneesressnenseens 206
Visualizing the Mixing Deskcccceevieririinieniiiinienteeneeeeieeeee e 207
Mixing Techniques for AtteNUAtIONScccceveervervierienerieneereeeese e 209
MIX SUIMIMATY .ottt 210
Mixing Additional ReSOUICES:ccccovervuerienieiiinieririereceeeeece e 211
10. HDR Audio WWIZardIVc.eeoveeieniiniiinieienienteieeteeeesreere st eve e 212
L@ o 1 TR 213
Implementing HDR Audio in WWISEcceevuerierienieeiienieneeienieereereseeniens 215
Setting up @ HDR Audio MIX .c.covuiriiriiiiienieniinienteeeieseeseseeseeve e 216
Setting up the HDR Audio Dynamic Range Windowcccccecueeueennen. 216
Enabling HDR Audio in the Master-Mixer Hierarchyc.cccccecevcieiiinnnne. 218
Setting up HDR Audio Dynamics Propertiesc..cccceeeeeeverneeneennennee. 218

The Use of HDR Audio in the Actor-Mixer Hierarchycc.cecceceevvevueneennnne. 221
Enabling Envelope Trackingccccceeueeieverneniininnienieneeseeneeneeeeneen 222
Editing a Waveform Envelopeccccooeveveneniniiiienienenenenceeeene 224
Enabling Source Normalizationccceeeevieriienennenieeneeneneeneeeennes 225
Using Make-up Gaill c..cooerveerieniieiienienieeieneesieeteeeesiesee st saeeas 226
Using the Voice Monitor to Understand HDR Audiocccceeveevierienennennee. 227
Opening the Voice MONItOr VIEWccceevuerieniervienienenienieneeeeeeenneenne 227
Auditioning Sounds in the Soundcastercoeceeverernervieneesennienenns 228
Capturing Data from WWISEcoccerueriivienrieneiienieneeieeeeneesre e 229
HDR AUdiO SUMMATYeiriiiiiiieniiiiinienteieeiesieere st ee st 231
11. Getting Set Up for AAVENtUIEccceevueriireriieniiiieieeteieeeese et 232
L@ o 1 PP 233
Work Unit Managementcccceevvereeruerieneenieniieneeneeneeneesseseesseesseseesseenes 234
Establishing a Naming Convention Earlyc.cccocevniniiiiiiiinininene. 234
Logical Grouping of Work Unitscccceccerveeverienienennenieneeneeeeennenee 234
Creating Work Units with Sharing in Mindcccceeevininininnnninnns 234
Grouping Objects in the Actor-Mixer Hierarchycccccevveveriiiniininnennene 235

Vi

The Wwise Project Adventure

Setting the Audio Channel Configurationceceeveverererieenienieneenenennenne 237
Speakers vs Headphones Panning Rulescccceeveriininiieniinenniennenne. 237
Creating Simulations with the Soundcasterc..coceveriiinirniniininncnienen. 240
Project SEttingscoooveeviiriiiiieiieeteeeeee e 242
Project Settings - General Tabcccccccevvirieniniiniiiiiiecccneeeeeen 242
Workgroup Plug-in Configurationceceveeveenereneneneneeneeneenneneenne 242
Audio File LOCAtIONScocveiiiiviiiiniininiiieicicrcsieneeeseee e 244
Default Conversion Settingsccccceveevervuerienernieniesenieneenreesreseennens 247
Defining the Sample Rate Automatic Detection Settingscc...... 247
Obstruction/ OCClUSIONc.cocviiiiiiiniiniininiictcrcrereee e 248
Setting Obstruction and OcclUSIONcccceeveevereenierieeneinieeieneeiereeaene 250

L L] T o PPN 252
Generating a Motion Source from an Existing Audio Signal 253
Generating Motion Using a Motion FX ODbjectccceceevervienierennnennnens 254
Customizing LayOULScceeecuirveeriieiiieiieneeseeeteeee et 256
Layout DOCKING ...ccveeoveriiriiiinienteieeteeeee ettt 257
VIEW DOCKING .uveriviriiiiiiieniteieeiertcte ettt sttt 259
EXternal SOUICESc.coiviruiriiiiiiiiicicieccn e 262
SoundBanks and SoundBank Generationcccceevevvivinineniininiienicnnenns 263
Creating a SoundBankccccoviiiiiiininnincecee e 263
Populating and Managing the Contents of SoundBanks 264
Excluding Elements from a SoundBankcccceeerviiniininninienennnene. 265

A New Approach for SoundBank Managementcccceevererereenenne 266
CONVErSION SETHINGS ..eecvververrieriiiiieireeiteereeseessreeseeereesseesreesneesneeas 267

The SoundBank Definition Fileccceceeevirieniinienenineneneneneeeeeeen 267
Using the Integrity REPOTT ...cc.cevuerieriiiiieiiiieieriereeieeteieee e 269
Using the File Packagerccoceeievirieniiieniiniciereeecteeteseeteseese e 270
Downloadable Content (DLC)cooovveviiiieieiiiiiieiireieeeeeeeeeeiiivereee e e e eessnnnnes 271
Setup SUMMATY coocviiiiiiiiiiiiiircc e 272
Setup Additional ReSOUICEScecverieriiriieriiiieienieereeeereeeee e 273
12. WOrkflow OptimiZationceceeveervereerrerienenenieieteniessessessessesseeeeseeseessessessens 274
L@ o 1 TR 275
Platform Inclusion / EXCIUSIONccccoceeiiiiiiiiiniiiiiininicictcccrceceee 276
Linking / Unlinking Propertiesc..ccccceeeeviereesenienennenieneesenieneeveseenes 277
Effects RENAEIINGccoovevuiriiiriiniiiienicieniestceeteetes et 278
Understanding the Different Types of Profiling in Wwiseccccceeevveuennnne 279
Connecting to the GAmMEccccecvervierieiieriieniieeeet e 280
Capturing Data using the Profilercccoceeereriininiienienenenenenene 281
Profiling Sound IN-Gameccceeeerienienennieniininienteseeeeseeie e 282
Instance Limiting, Prioritization, and Virtual Voicesccccccevevvivuincnennen. 284
Playback LIMILS ...eeveereerierienieiiientenieeieneesie sttt st esre st st esne et s s sanens 285
Setting a Playback Limit per Game Objectccceceevveevienienernieneennennne. 285
Setting a Playback Limit on an Audio Busccccceeerieviniinicninnicnnnene 285
Global Playback Limitcccceieviiriieniiiinienieieniceeeeeceeereeee e 286
Setting Playback Priorityccccceeeverieriniiinieienientceceeeeeseeee e 287

vii

The Wwise Project Adventure

Understanding Virtual Voice Behaviorccccceceevernieniniinienensenicneeienens 288
Bridging the Game Engine Integration Gapccccceeeveerernienneenenneeneenneenes 291
How Does SoundFrame WOTkK?cccceeveriininnienieninienecnenieeeeiens 291
Additional Game Engine Integration Techniquesccccceceevervieneennenns 292
Optimization SUMMATY ..ccceiiiiiiiiiiieiieieeeere et 293
Optimization Additional ReSOUICEScccceeeeveerienirnienieniiienieseeieeeeeene 294

13, ClOSING tuveeureneeterieniteteete ettt sttt s et s e s bt et st e bt e besate s bt e besanesneenesnnes 295
The Real Adventure Beginscccceceeieveriienieniniienieieneeneesieetese e 296

viii

The Adventure Begins

While interactive audio continues to scale in complexity, certain implementation and
workflow fundamentals remain the same. The Wwise sound engine and authoring
application has been built from the ground up to support current and next gen audio
integration in a flexible and dynamic productivity pipeline.

Building on the concepts explained in Wwise Fundamentals, the Wwise Project
Adventure shows how to implement interactive and dynamic audio for a fictional
game project. This comprehensive overview covers the process from start to finish,
and the companion Wwise project allows you to take a hands-on approach to
investigating the techniques. Whether you take a hands-on approach with the
tutorial, or simply follow along in the accompanying project is up to you.

This book is intended for readers with some experience with digital audio in
addition to basic experience with audio for games. Links to additional information
to extend your knowledge into different areas of implementation are provided
throughout this document. It does not replace the user documentation, but instead
provides a way to access the details through specific examples and illustrations of
techniques using the Wwise authoring application.

Our case study is a fantasy adventure game set deep in a forest, with danger lurking
at every turn. An occasional dungeon gives the hero an opportunity to purge the
scourge that lies within its darkened corridors. Armed with a trusty sword and the
steadfast courage to persevere, the hero follows the path to riches that lie just ahead
on the horizon.

Welcome to the Wwise Project Adventure!

ix

Chapter 1. Setting the Ambient Stage

L o 1 TP 2
Building the FOuNdationcccccoceviiieriiniiiinieenecteeeeceeeeeee e 3
Importing Audio FIlescccoceeiiiiiiiiiiiiiieneceeeeeeeee e 3
Setting Up a Looping SOUNd.cc.cocueriiriiinienieniiienieneeieeeeseeeeeere e 6
Adding Detail to a Developing Soundscapeccceeceeeeevierienennenienenneenenn 11
Randomizing Propertiescceceeeeveeriererieerienenieneeneneestesreeee e 11
Using the Blend Container to Combine Soundscccceceevervieniennennnes 13
Weighted Randomization Using the Silence Plug-incccccoceevienneennen. 13
Randomized Positioning of SOUNdscccceeevieveenieniienenieneeneniennenns 15
Creating the Combined Daytime Forest Ambient Combination 18
SECHION SUMIMATY uviiiiiiiiiiiiiieiiteere ettt re s s ne e sneene e 18
Introduction of a Day and Night Cyclec.coceveviririiniiiniininenerenceeeeeeee 19
Establishing a Game Parameterc.ccocevervierienenienieninieeeeneee e 19
Creating the Ambient SYStemcccceevierieneniinieninienteeeeeeeee e 20
Using the Blend Track EditOrc.cocvevuiiiiiniieniiiinicicecececieneceeeeeeeiee 20
Setting Container Order within Blend Tracksccceeervieniininnennininnennens 23
Preparing the EVEentccccociiiiiiiniiiiiiiiceeetceeeceeercee e 25
Harnessing Event ACtIONScocvevvueiiiiiiiieiiiiiieeteceeeeeseeereeee e 26
Creating WOrK UNItS ...coeevuiiiierieniiieniciteteneesecere sttt 29
SeCtION SUMMATY euviiiiiiiiiiieiieeeteee ettt 34
Sound Emitters in the Game Worldccccocoeiiiiiiiiiiiiniiiiiiccce, 35
Creating Attenuation ShareSetsccccevververiereriienienenienecsee et 35
Creating and Establishing Generalized Attenuationscccceeveeeeevveneennenne 36
Subscribing Sound Objects to an AttenUAtionccccceeeveereereerrenseeneeseeneens 37
Using Spread as Part of an Attenuationc.ceceeveeeereereenerenenieneeneeneeneeees 38
Using Low Pass Filter as Part of an Attenuationcccceceveveveneneneeeennenee 41
Adjusting Cone Attenuation Propertiescoceeveereeverneeneenenneeneenenneennes 42
SECHION SUMIMATY uuveiiiiiiiiiiieieeite ettt ettt st s ne e sneene e 43
SoundSeed Air -WIndccccoeviiiriiiiiiiiiiiee e 44
SoundSeed Wind - Deflectorsc.coeveriiiiiiiiniiniinininnicececrcceee 46
SoundSeed Wind - PrOPertiescocuecerveerierieniienienienieneenresiesreeseeseesseennes 47
SoundSeed Wind - RTPCcccooiiiriiiiiiiiiiiiiincteeeeeeae 49
AmDbIENt SUMIMATY .eeevvieiiiieiiiieeteeetestes ettt sr et sre st sae s saeesseeanes 50
Ambient Additional RESOUICEScceeviiiiiiiriiriiniiriiiiieictereeee s 51

Setting the Ambient Stage

Overview

The stage is set before a single piece of geometry has been placed. The goal is simple:
create a lush and non-repetitive ambient background to support hours of travel
through the deep forest that lies ahead.

This chapter will take you through the process of:

+ Importing audio files.

+ Setting up a looping background ambient audio source.

+ Randomizing playback of background ambient elements.

+ Randomizing the 3D position of elements.

* Applying real-time parameter control to blend containers using Crossfade.
+ Using sound emitters as part of ambient design.

+ Creating attenuation ShareSets.

+ Subscribing attenuations to game objects.

+ Using SoundSeed Air - Wind.

* Master-Mixer hierarchy organization.

Setting the Ambient Stage

Building the Foundation
Importing Audio Files

We’ll begin by importing a single audio file into a new Wwise project with the
intention of using it as a looping ambient background. There are a few things to keep
in mind about the process of bringing content into the project.

At a very basic level, Wwise distinguishes between the following two types of assets:

+ Original assets imported into Wwise.

* Versions of these assets created for the various game platforms.

Wwise stores these two types of assets in different locations within the project
folder, so they can be managed independently. Any imported assets are stored in the
Originals project folder by default. Since these assets are usually shared by several
people on your team, this folder can be located anywhere on your network and can
easily be managed by your source control system.

The import process includes the following operations:

+ The original media (WAV) files are validated by Wwise before being copied into
the project's Originals folder.

» Audio sources are created for the media files.

+ Sound or music objects that contain audio sources are created in Wwise and are
displayed in their respective hierarchies on the Audio tab of the Project Explorer.

Importing files into the Actor-Mixer hierarchy using the Audio File Importer allows
you to import individual files or groups of files by folder. You can import through
the Project menu, or by right-clicking the work unit or container where you want the
audio files.

Setting the Ambient Stage

Project| Edit Views Layouts Audio Windows Help

New... Ctrl+N
Open... Ctrl+O
Save Ctrl+S
Close Ctrl+F4
Languages... Shift+])
File Manager... Shift+F1
Remote Connections... Shift+H

Import Voice Assets...
Import Audio Files... Shift+]
Clear Audio File Cache...

Convert All Audio Files...

Project Settings... Shift+K
Default User Settings... Shift+D
Profiler Settings... Alt+G
User Preferences... Shift+U
Keyboard Shortcuts... Ctrl+Shift+ K

Copy Platform Settings...

Integrity Report... Shift+G

Importing audio files from the Project menu

Audio File Importer 2%

Import as: Sound SFX

SE_PROJECT_ADVENTURE\Qriginals\SFX \Ambient_Backaround'amb_forest_day_backaround_loop.wav > E &) amb_forest_day_background_loop

Import

The Audio File Importer showing a single file to be imported as a Sound SFX

Alternately you can drag and drop audio files from folders directly into the Wwise
hierarchy.

In the following example we’ll import an ambient sound file for use as the basis
of our ambient sound system. This file used can be found in the project folder: /
Originals/SFX/Ambient_Background/ambient_forest_day_background_loop.wav.

= (M Default Work Unit

h".

Imported sound file

Setting the Ambient Stage

, Designer Note

Sound, music, or motion fx objects associated with sources that are

not converted for the current platform appear blue in the Audio tab of
the Project Explorer. Once a sound source has been converted to the
target platform format, the text appears white. If a sound object has been
created with no valid source, the text will appear red.

The imported file is added to a sound object, which includes a reference to the
imported media file(s). When you load a sound object into the Property Editor, its
sources are displayed in the Contents Editor.

amb_forest_day_background_loop - Contents Editor - 1 child 215
Mame Audio File Vol. Offset Duration Motes

SFX Add Source ==

y|l amb_forest_day_background 0 =]

Armbient_Backgroundiamb_forest day _background_loop.wav

Sound SFX object showing the source audio file location

, Designer Note

A sound object can contain multiple sources including alternate versions,
silence, plug-ins and different language versions for localization.

A sound object can be auditioned by using the Transport Control. After double-
clicking the ambient_forest_day_background_loop sound object, click the play icon
to play the object loaded in the Transport Control. Alternately, pressing the spacebar
plays and stops the sound object.

.L-'.i“- amb_forest_day_background _loop - Transpart Contraol

QOriginal ResetAll == States RTPCs

PF Only = Wk Switches | Triggers

Transport Control showing the play icon

Setting the Ambient Stage

Setting Up a Looping Sound

Now that a background forest day ambience audio file has been added to the project,
it needs to be set to loop for it to continue playing. You have the option to loop the
sound or motion fx object indefinitely, or to specify the number of times it will be
looped.

amb_forest_day_background_loop - Sound Property Editor
Audio Events SoundBanks GameSyncs ShareSets Sessions ([N | Name Notes
amb_forest_day_background_loop M 5 PF
Master-Mixer Hierarchy
Fault Work Unit
Actor-Mixer Hierarchy Initial Delay
) Default Work Unit o n 0

General Settings Conversion Settings Effects Positioning RTPC States Motion Advanced Settings

b
= @ Interactive Music Hierarchy i
™ Default Work Unit = Loop

Infinite
No. of loops

Game-Defined Auxiliary Sends

Looping properties of a Sound SFX

By default, double-clicking an object displays the object’s properties. This action
changes the focus of the Sound Property Editor to the object that was selected.

Looping Multiple Sound Files

While playing a single sound file with no audible loop point continues to be a
relevant technique, it has become equally common practice to assemble a loop
through the randomized combination of individual sound files. For example,
instead of playing back a single two minute sound file, you could instead choose to
randomize the playback of four 30 second files.

Moving forward with this approach for the night forest ambient background, we'll
start with a single ambient sound file that has been edited into four smaller files.
These files will then be imported and parented within a random container. By
randomizing the order in which these four files are played back, the eventual loop
composition will be created differently each time.

Start first by importing the four individual files, either using the audio file importer
(as shown above) or by dragging and dropping them into the default work unit from
their source folder.

Setting the Ambient Stage

Project Explorer (1]

Audio Events SoundBanks Game Syncs

= @ Actor-Mixer Hierarchy
= N Default Work Unit

N

[
a5

N

v
a5

N

Multiple sound files imported

To accommodate the complex nature of audio within a game, different types of
objects can exist within the Wwise project hierarchy. You can use a combination of
the following object types to group your assets and build a structure for your project.

+ Sound objects
* Motion FX objects
* Actor-Mixers

« Containers

The Actor-Mixer hierarchy includes four container types:

- Random Container: a group of one or more sounds, motion fx objects, and/or
containers that are played back in a random order.

- Sequence Container: a group of one or more sounds, motion fx objects, and/or
containers that are played by according to a specific playlist.

HEr

- Switch Container: a group of one or more sounds, motion fx objects, and/or
containers that are organized into a series of switches or states that correspond to
the different alternatives that exist for a particular element in the game.

Setting the Ambient Stage

- Blend Container: a group of one or more sounds, motion fx objects, and/or
containers that are played back simultaneously. The sounds and containers within
the blend container can be grouped into blend tracks where sound properties are
mapped to game parameter values using RTPCs. Crossfades can also be applied
between the sounds within a blend track based on the value of a game parameter.

The next step in the process uses multiple audio files whose order will be randomized
when played. For this example we will be creating a random container. A random
container or other type of sound object can be created a few different ways:

+ Using the Project Explorer toolbar

+ Through the right-click contextual menu

+ Using a shortcut key command (Help menu: Wwise Shortcuts Quick Reference
Card)

By selecting the default work unit and then clicking the random container icon in the
Project Explorer toolbar, a new random container is created within the selected work
unit or sound object.

Project Explarer [a](Z]

Audio Events

= @ Actor-Mixer Hierarchy
= M Default Work Unit

Creating a random container from the Project Explorer toolbar

Once the random container has been created and named, sound objects can be
dragged and dropped directly into it.

Praject Explorer 112X

Audioc Events SoundBanks Game Syncs ShareSets Sessions nn

= @ Actor-Mixer Hierarchy
= M Default Work Unit

= | ¥ amb_forest night_background loop
h-
a‘.

N

a

Random container containing multiple ambient sound files

Setting the Ambient Stage

Now that the four smaller pieces of the background forest night ambience loop have
been added to the container, their order of playback will be stepped through based
on the properties set in the Random Container Property Editor. In Wwise, random
can mean either a standard random selection, where each object within the container
has an equal chance of being selected for playback, or a shuffle selection, where
objects are removed from the selection pool after they have been played. You can
double-click your random container to display its random properties.

m amb_forest_night_background_loop - RandomSequence Container Property Editor
Mame

amb_f

Seguence

Avoid repeating last 1 played

Volume
Pitch
Il 1]

Continuous
Low-pass filter e

ALxili us Volume
1 0 = Infinite

High-pass filter _ No. of loops
1 0

Play type properties for a random container

The same looping functionality exists within the properties of a random container,
where a group of audio files can be randomized within the container and looped in
the same way.

Setting the Ambient Stage

m amb_forest_night_background_loop - RandomSequence Container Property Editor

FF
gs Effects Positioning RTPC

Cukput Bus

Seguence
Game-Defined AL
1 played

Use game-defined a.

Wiz Continuous

Loop
Wolume
Infinite Type Sample accurate

Mo. of loops

Looping sounds in a random container using continuous play mode

Once the files have been defined as random and are continuously looping, you
can also control the way that sounds transition or flow from one sound to the
next. Enabling the transition property as part of the looping play mode gives you
additional control over the sound.

m amb_forest_night_background_loop - RandomSequence Container Property Editor

M s PF
gs Effects Positioning RTPC ° Motion Adwar

Voice Qutput Bus Initial Delay

Override parent

Sequence

ed Au

ide parent I 1 played

Volume

PFitch Continuous

Loop
Volume .
Infinite

Mo. of loops

Adding a transition type between sound files in a loop

10

Setting the Ambient Stage

In this example, a sample accurate transition creates a seamless looping ambient file.
Other transition options include: delay (silence), Crossfade using constant power,
Crossfade using a constant amplitude, and trigger rate.

The power of this approach is in the diversity that can be gained by the
recombination of multiple sound files at runtime, as opposed to using a single file
of predetermined length. Additionally, by enabling control over the way that sounds
transition, the diversity and complexity gained can deliver varied and non-repetitive
loops. Whether you're dealing with mono, stereo, quad, or surround ambient
backgrounds, each of these looping methodologies are supported.

In this section we’ve successfully begun the process of creating the ambient
background system. With limited resources it’s possible to convey a rich sense of
environment using creatively designed and implemented loops as the foundation.

Adding Detail to a Developing Soundscape

Now that the background ambience has been established, we’ll add dynamics and
variability using techniques not available with a single looping file or set of files.

A forest in the daytime is comprised of many individual sounds, all sounding in
unison. We’ve created several containers of daytime ambient elements such as birds,
crickets, owl hoots, or wolf calls that we’ll employ to continue building a more
complex ambient background.

Random Containers of daytime ambient elements

Randomizing Properties

In addition to setting a static value for volume, pitch, and LPF in the Property Editor,
you can also vary these settings using the Randomizer. The Randomizer allows you
to specify a range of values that can be randomized between for any of the given
properties. Double-clicking the randomizer button in the property box allows you to
author a minimum and maximum amount of random variation. In this example, the
pitch randomizer has been enabled and a random variation of -150 to 150 cents has
been specified.

11

Setting the Ambient Stage

m amb_day_element_frog - RandomfSequence Container Property Editor
Mame Motes
amb_day_element_frog c PF
Conversion Settings Effects Positioning RTPC

III|I 0 | ce ':I U u:l U t Ei s

Yolume Low Pass Filter

I 0 I 0

) Randomizer (==

it amb_day_element_frog - Randomizer...

Volume -150
Pitch

il

0 Enable

Showing pitch randomization between -150 cents and +150 cents

When a Randomizer is enabled, it turns from grey to yellow to indicate its activation.

Q Designer Note
Maximizing the randomness of each individual set of content will help
you get the most out of each type of sound. While you may be able to
dramatically vary the pitch of a single cricket chirp without it sounding
strange, an animal call may not have the same ability to be pitched in the
extreme without sounding abnormal.

12

Setting the Ambient Stage

Using the Blend Container to Combine Sounds

Once the individual elements have been added to random containers, and you
have spent some time diversifying their pitch, volume, and LPF properties, it’s time
to combine them into the sound of an animal chorus. One way to play multiple
containers of individual elements is by using the blend container. A single blend
container with no blend tracks will play all child objects simultaneously. This
methodology allows for the summing of multiple sounds and helps keep things
organized.

Additionally we'll want each container to loop its contents, so that the sound of each
element can repeat over time along with the daytime ambient background.

Grouping multiple ambient daytime elements within a blend container

Weighted Randomization Using the Silence Plug-in

If we were to loop all of these sounds constantly, they would quickly become
overwhelming. By introducing silence between each sound file, the sounds play
less frequently and the daytime forest soundscape is given balance. The addition
of a Wwise silence plug-in to a Sound SFX object allows for silence as part of the
randomization between sound files.

Begin by adding a new Sound SFX object to the default work unit by clicking
the Sound SFX icon in the Project Explorer toolbar, a new Sound SFX is created.
Alternately, Sound SEX can be created from the contextual menu or by using
shortcut keys.

Project Explorer (1] 2]
Audio Events SoundBanks Game Syncs (KRN

O 20)
= # Master-Mixer Hierarchy

i M Default Work Unit
= @ Actor-Mixer Hierarchy
= M Default Work Unit*
&

Creating a Sound SFX from the Project Explorer toolbar

13

Setting the Ambient Stage

After double-clicking to select the new Sound SFX, you can add silence using the
Add Source menu in the Contents Editor. You can set a static duration in addition
to a random minimum and maximum duration with the Wwise silence plug-in. The
random minimum works in conjunction with the static delay by subtracting from
the duration value.

.ﬁ"- Silence - Contents Editor - 1 child

MName Duration Rand. Min Rand. Max Motes
Add Source =3
LcEiEiiE we e CrankcaseAudio REV

SoundSeed Air
Wwise Audio Input
Wwise External Source
Wwise MP3 Input
Wwise Silence
Wwise 5ine
Wwise Synth One
Wwise Tone Generator

Creating a silence source plug-in for a sound object

By specifying the weight of each Sound SFX, you have control over the probability of
playback for each audio file within the random container. By weighting the silence
object appropriately, you can predictably add a comfortable sense of repetition
during the playback of individual audio files. This ensures that birds don’t chirp too
often and allows for a randomized duration of silence between bird call variations.

[amb_day_element_birds - Contents Editor - 5 children 2]
Mame Weight Volume Pitch Low Pass

0 0

* Silence 40

=

" amb_day_element_02_01

=

" amb_day_element_02_02

=

1 == (== = =]
| SE=E =k Sa=E S==E)
; S=SF =258 22ZF =2ZSC

" amb_day_element_02_03

0
0
0
0

LLLL
UL

=]

" amb_day_element_02 04

Controlling sound playback probability using the weight setting

14

Setting the Ambient Stage

2 Designer Note
You don't have to worry about getting individual weights to add up to
100%; Wwise takes care of the math for this automatically based on the

values you input.

Randomized Positioning of Sounds

We now have the individual daytime nature sound types randomizing and summed
together within a blend container. Next, we’ll introduce user-defined 3D positioning
in order to giving the soundscape some life.

2 Designer Note
The Position Editor (3D User-defined) allows for the definition of spatial
positioning for an object in a surround environment using animation
paths. You can create many different versions of a path and then animate
the sound or music along these paths. You can also define how the
different paths will be played back. The paths you create will override the
position and orientation in the game.

After selecting one of the random containers of elements, you can make changes in
Positioning tab of the Property Editor. By changing the position source from the
default Game-defined to User-defined, you can access the Position Editor where you
can author to determine user-defined playback position of sounds. This technique
is used to enable positional movement for static sounds and also to add positional
randomness to the ambient elements that have been prepared.

15

Setting the Ambient Stage

Conversion Settings Effects Posiioning RTPC States Motion Adwvanced Settings

30

Attenuation

Mode

Position Source

|Iser-defined Edit...

Enable Spatialization

Setting up user defined positioning for ambient elements

Multiple paths can be created that can be followed or randomized between to
simulate the effect of having many individual sounds coming from different
directions.

16

Setting the Ambient Stage

Marme:

amb_Path_01
Amb_Path_02
Amb_Path_03 00:05.000
Amb_Path_p4 00:05.000
Amb_Path_05 00:05.000
Amb_Path_D6 00:05.000

Random Range

Random
Flay Mode

Continuous

Pick new path when sound starts 46203

Display QOptions

Fre=rorit Configure Timeline. ..

Defining where sounds will play according to
speaker placement using the Position Editor

Designer Note

How to work with the Position Editor is covered extensively in the

Video Tutorial - Positioning and Distance Attenuation and in the
documentation: Wwise Help > Wwise Reference > Positioning > Position
Editor (3D User-defined)

17

http://youtu.be/v0D4lJkffII
http://youtu.be/v0D4lJkffII

Setting the Ambient Stage

The ambient day and night elements included in the accompanying project have
been created using user-defined 3D positioning and can be referenced for further
insight into this technique.

Creating the Combined Daytime Forest Ambient Combination

Now that both the looping ambient background random container and the blend
container of individual daytime elements have been created, it's time to combine
them within a single blend container.

Ambient_day_night
i} amb_forest_day_background_loop

2 amb_day_elements_sum

Using a blend container to combine the ambient
background loop and daytime elements

The randomized daytime elements are now playing in conjunction with the

looping ambient background to create a soundscape that is different every time.
There is always room to add additional variation to sound files themselves, or
through property randomization. Finding the right balance between content

and implementation is a good way to optimize resources and reduce player

listening fatigue. Combining techniques from both of these aspects of integration is
oftentimes the best way to create a successful, non-repetitive playback system that fits
the scope of the game.

Section Summary

Throughout this section we have created the following sound objects:
+ Random container with multiple daytime forest ambient background files looping
via transition.

+ Blend container containing ambient daytime elements summed with weighted
silence and positioned randomly in 3D.

18

Setting the Ambient Stage

Introduction of a Day and Night Cycle

After a day of travel through the forest, the sun begins to set and the adventure
begins to turn ominous. Growing shadows on the trees transform a once idyllic path
into a dark and foreboding passage. In order to effectively convey the passage of time,
we expect the sounds to accurately reflect the visual environment and mirror the
same sense of despair and unease.

Establishing a Game Parameter

We'll start by having the programmer pass the same information from the

game controlling the visual time of day as a game parameter to Wwise. Used in
conjunction with a blend container that contains the ambient background and
individual elements of the system, we can effectively control the ambient soundscape
in time with the rest of the game.

To begin with, we’ll create a new game parameter for Time_of_Day. Start by selecting
the default work unit from the game syncs tab in the Project Explorer. This allows
you to add a new game parameter from the Project Explorer toolbar by clicking on
the game parameter icon. Alternately, a game parameter can be created from the
contextual menu for a game parameter work unit or by using shortcut keys.

Project Explorer 17154

Audio Events SoundBanks Game Syncs

T
= Switches

© W States
= @ Game Parameters
= N Default Work Unit*

1" [New_Game_Parameter|

Creating a game parameter from the Project Explorer toolbar

Once the game parameter has been named, the parameter range can be established
in the Property Editor. We’ll set up the Time_of_Day game parameter using values
from 0-24, allowing for the parametrization of sounds according to a 24-hour clock
with 0 representing 12am.

19

Setting the Ambient Stage

rﬁ Time_of_Day - Game Parameter Property Editor

MName
Time_of_Day

Range

Setting the Time_of_Day game parameter values

Creating the Ambient System

Now that we have a game parameter in place that we can use to drive the time of day
simulation, we’ll employ a blend container to play back both the looping background
and randomized positional ambient sounds simultaneously. Once everything is

set up, the forest ambience represents a fully dynamic day and night cycle that

can be controlled and auditioned using the game parameter within the authoring
application.

Using the techniques outlined in the previous section, we can move forward with the
creation of a nighttime ambience that includes the same features implemented for
the daytime. However, instead of putting the day and night containers within their
own parent blend container, we’ll be adding all of them to a single blend container
called Ambient_day_night that will be used to govern the entire ambient forest
system.

= X Ambient_day_night

-+

amb_forest_night_badkground_loop
amb_day_elements_sum
amb_night_elements_sum

[+]

[+]

Adding all of the day and night containers to a single ambient blend container

Using the Blend Track Editor

Now that everything is in the blend container and playing simultaneously, we need

a way to isolate the day and night elements and integrate the Time_of Day game
parameter. A special function of the blend container is the Blend Track Editor, which
is used to modify the contents of containers so that their properties can be controlled
by RTPC curves and Crossfades.

20

Setting the Ambient Stage

Blend tracks can be accessed in the General Settings tab of the Blend Container
Property Editor.

ﬁ arnbient_dav_night - Blend Container Property Editor @)

Mame
Ambient_day_ night TN S FF H

General Settings | Conversion Setkings Effects Positioning RTPC States Maotion Adwanced Settings

Voice Output Bus Initial Delay

Owverride parent I 0

Blend Tracks

Edit...

Game-Defined Auxiliary Sends

Owerride parent

i 1]
Volume

Pitch
I 1]

Jefined Auxiliary Sends

Owverride parent
Low-pass filter
1] 1] 1D | Auxiliary Bus Yolume

High-pass filter
T 1]

Opening the Blend Track Editor from the Property Editor

The Blend Track Editor is made up of two main areas: one where blocks can be
crossfaded, and another where RTPC curves can be added and modified using the
graph view. These areas are enabled by adding a new blend track from the Blend
Track Editor.

&% Ambient_day_night - Blend Track Editor

Blend Container: | 3€ Mew Blend Track

Adding a new blend track to an empty blend container using the Blend Track Editor

21

Setting the Ambient Stage

Once a new blend track has been added, it can be named after the ambient
background. Enabling the Crossfade option lets you select a game parameter which
can be used to transition between containers or other sound objects on the blend
track.

£53 Ambient_day_night - Blend Track Editor

tainer: | New Blend Track
i Background
Crossfade Time_t

Coordinates

Enabling the Crossfade on a new blend track

By adding a Crossfade to the Background blend track using the Time_of_Day game
parameter, you can position containers according to values of the game parameter.
The positioning of containers on the blend track determines the amount of overlap
or Crossfade.

Designer Note

Changing between game parameters with different ranges can affect the
range of the blend track’s audio blocks. In this case, a decision must be
made whether to Stretch the audio blocks or Preserve their position after
the change in game parameter.

Now that a blend track has been added and the ability to crossfade has been
established, containers can be assigned to blend tracks in the Contents Editor.

E3 Ambient_day_night - Contents Editor - 4 children 7]
Name it ow Pass Blend Tracks
clama Background
. amb_day_elements_sum o
mb_night_elements_sum

1 amb_forest_night_backgn

% amb_forest_day_backgrol

Blend tracks section of the Contents Editor

22

Setting the Ambient Stage

Setting Container Order within Blend Tracks

Now you can drag and drop containers within the blend container into the blend
tracks section. When setting up a blend track in the Contents Editor, it is important
to position containers in the order you want them to show up, from left to right in
the Blend Track Editor.

You can see how the order relates to positioning in this example:

Blend Track: Background

1. Random container: amb_forest_night_background_loop
2. Random container: amb_forest_day_background_loop

3. Random container: amb_forest_night_background_loop

3£ Ambient_day_night - Contents Editor - 4 children

Name Volume ow Pass Blend Tracks

X amb_day_elements_sum Background

7 amb_night_elements_sum
£ amb_forest_night_backgn

%% amb_forest_day_backgrol

Mame: Background
amb_forest_night, o fo _forest_night_b
Crossfade Time_of Day ound_loop round_loop

Coordinates

|

Adding an additional blend track with ordered containers

To complete the full scope of our ambient system implementation, the ambient day
and night elements need to be added to their own blend track.

Blend Track: Elements

1. Random container: amb_night_elements_sum
2. Random container: amb_day_elements_sum

3. Random container: amb_night_elements_sum

23

Setting the Ambient Stage

me Volume oW g Blend Tracks
- amb_day_elements_sum Background

amb_night_elements_sum

%% amb_forest_night_backgn

%% amb_forest_day_backaro

Container order on a Blend Track represented in the Contents Editor

B Ambient_day right -Hlend Track £4 or [X

Blend Container:
MName: Background)

amb_forest_night, cf<0 p_forest_night_b
_-”

e e |
i i s |
A |
Mld

Adding an additional blend track with ordered containers

The Time_of_Day game parameter cursor can now be used to audition the Crossfade
between containers for both background and ambient elements. You can also

modify the points of these curves and Crossfade types in real time during playback.
Furthermore, game parameters can be used in conjunction with blend tracks to
affect the volume, pitch, and low pass filter parametrically.

24

Setting the Ambient Stage

Ambient_day_night -Blend Track Editor [

il tainer: |4 New Blend Tradk

Background

e/

[et | W

An example of using a game parameter in
conjunction with volume to affect a blend track

Preparing the Event

Now that the dynamic ambient system has been created, it’s time to prepare the

loop to be played and stopped by the game engine. Wwise uses events as sound,
music, and dialogue instructions to the game. Events determine which sound, music,
motion, or dialogue is played at any particular point in the game and can be used to
control other aspects through the use of different actions (Play/Pause/Stop a Sound,
change its Volume, Pitch or Low Pass Filter, etc.).

Events can also apply actions to the different structures within your project
hierarchy. Each event can contain one action or a series of actions. The actions you
select specify whether the Wwise objects will play, pause, stop, and so on.

To prepare our ambient system to be played and stopped by the game engine when
the hero enters and exits the forest, two events need to be created:

+ Play_Ambient_Forest
+ Stop_Ambient_Forest

We’ll begin the process of creating a new play event by navigating to the
Ambient_day_night blend container and selecting New Event > Play in the
contextual menu.

25

Setting the Ambient Stage

i 0o Mew Child »
: : ; Mew Parent 3
& b Mew Event 2 Play
Delete Delete fre
Rename 2 Stop b
Pause 2
Impert Audio Files... Shift+1 Mute 5
Platform Inclusicn 2 Velume 3
Expand Options 3 Hled ’
Low Pass Filter 2
Cut Ctrl+X State "
Copy Cr+C Set Switch
Paste Crl+V Bypass Effect »
Edit Seek 2
Show in List View Ctrl+Shift+F Trigger
Show in Schematic View Ctrl+Shift+5 Game Parameter L4

Creating a new event using the contextual menu

This creates a new play event named after the container in the events section of the
Project Explorer as part of the default work unit.

Project Explorer 121X

Audio Events SoundBanks Game Syncs|El S

= @@ Events
= M Default Work Unit
"Bz Play_ambient_day_night

A newly created event in the events tab of the Project Explorer

Harnessing Event Actions

When the event is created, the Event Editor is brought into focus to reflect the new
event. The new event is created with the Ambient_day_night blend container added
to it with a Play action type.

26

Setting the Ambient Stage

FE Play_Ambient_day_night - Event Editor

H Event ID
Ambient_day_night

Event Ackions

PF | Actions

Play #mbient_day_night

Location in Hierarchy

Probability:
Fade in time
100

Cupve

An event created using the Play action in conjunction
with the Ambient_day_night blend container

Event actions can also be removed or added to an event using the Selector.

27

Setting the Ambient Stage

Event Actions
Ma. PF
1 == Remove Action
2
Play
Break
Stop L4
Pause 2
Mute 2
Volume 3
Pitch 2
Low Pass Filter 2
State 2
Set Switch
Bypass Effect 2
Seek L4
Trigger
Game Parameter

Accessing additional event action options using the Selector

The Event Editor also shows the location of the object for each event action and any
properties available for a given event action.

Designer Note

Each event action has a different set of action properties that can be
modified to produce the desired effects. See the help documentation for a
full listing of event actions and properties:

Wwise Help > Wwise Reference > Events > Event Editor

Wwise Help > Where to Begin? > Wwise Fundamentals > Understanding
Events > Action Events

Wwise Help > Interacting with the Game > Managing Events > Overview
> Types of Event Actions

28

Setting the Ambient Stage

Location in Hierarchy

Action Properties

Delay lay Probability

Fade in tirme
100

Curve

Action properties available for the Play event action

The action properties that can be used to modify the Play event action include:

* Delay - the amount of time that goes by before the action is performed.
* Default value: 0, Default Slider Range: 0 to 10, Input Range: 0 to 600, Units:
Seconds.
+ Fade in time - the amount of time it takes for the object to fade in.
+ Default value: 0, Default Slider Range: 0 to 10, Input Range: 0 to 60, Units:
Seconds
+ The fade in begins after the specified delay, if any.
+ Curve - the curve shape that defines how the object fades in.
+ Probability- Percentage of probability that an event action will play.

* Default value: 100, Default Slider Range: 0 to 100, Input Range: 0 to 100, Units:
Percentage

Creating Work Units

We’ll approach the creation of a stop event for the Ambient_day_night blend
container a little bit differently.

First, we’ll create a new work unit called Ambient in the events section of the Project
Explorer to begin separating out different components of the project.

At the foundation of Wwise Workgroups is the work unit. Work units are distinct
XML files that contain information related to a particular section or element within
your project. These work units can help you organize and manage the different
elements within a project. Hierarchies of nested work units can now be created and
organized in physical folders and subfolders.

Creating a new work unit can be done through the Project Explorer toolbar by
clicking on the work unit icon. Alternately, a work unit can be created from the
contextual menu from the event heading title.

29

Setting the Ambient Stage

"Project Explorer

Audio Ewents SoundBanks Game Syncs - Queries

= @ FEvents
= (0 Default Work Unit
"= Play_Ambient_day_night

New Work Unit

Mame: Ambient

Creating and naming a new work unit

After a work unit is created, you can delete, move and rename it in the Project
Explorer. You can also make these changes to work units and source files from the
File Manager. The File Manager can be accessed through the Project menu.

30

Setting the Ambient Stage

File Manager (No Source Control Plug-in) (71X

Work Units Source Files

Project Folder:

File Status Owner(s) Modified | Read-Only
= B Actor-Mixer Hierarchy - -
M Ambient.wwu
M| Default Work Unit.wwwu Delete
= ¥ Arguments Rename
™ Default Waork Unit.wwu
= @ Attenuations Open Containing Folder
M Ambient.wwu
M Default Wark Unit. wwu
= @ Conversion Settings
M| Default Work Unit.wwwu
M Factory Conversion Settings.wwu
= # Dynamic Dialogue
M| Default Work Unit.wwwu
= §& Effecs
M| Default Work Unit.wwwu

Copy to Clipboard Entries in vellow indicate critical project files or folders. Do not rename or delete.

Close

Using the File Manager to delete, rename, or move work units and source files

Now that our Ambient event work unit has been created, we can move our
previously created Play_Ambient_day_night event by dragging and dropping it from
the Default Work Unit.

We can now add a new event called Stop_Ambient_day_night through the Project
Explorer toolbar by clicking on the event icon. Alternately, an event can be created
from the contextual menu or by using shortcut keys.

31

Setting the Ambient Stage

Project Explorer [1][Z] ¢

= "' Events

M Default Work Unit
= (M Ambient
“BE Play_Ambient_day_night
5

Creating a new event in the Ambient work unit

Double-clicking the newly created Stop_Ambient_day_night event will open it in the
Event Editor. The next step is to add a Stop action by using the event action Selector
and selecting Stop>Stop from the selection of event actions.

iLE Stop_Ambient_day_night - Event Editor

Remowve Action

Play

Break

Stop 2 Stop

Pause 2 Stop All

Mute 2 Stop All Except

Adding a Stop event action to a new event

Once an event action has been added to the event, it needs to be assigned an object
to which the action will be applied or it will show as Missing in the Objects column.
When the event is requested by the game, the specified action needs to be applied to
one of the four object types:

+ Sound objects

+ Motion FX objects
+ Actor-Mixers

+ Containers

These objects can be navigated to using the Project Explorer - Browser or dragged
and dropped from the Project Explorer over text in the object column on the event
action in the Event Editor.

32

Setting the Ambient Stage

L& Stop_Ambient_day_night - Event Editor
MName:
Stop_Ambient_day_night
Event Actions
Mo.

1
Browse...
"_1

Remove Object

= @ Master-Mixer Hierarchy
I_T' Default Work Unit
on in Hierarchy = @ Actor-Mixer Hierarchy
) Default Work Unit
—| |.T Ambient
Action Properties = "-~ Ambient Badk

7 ent
Delay Stop = = =N
=

Fade out time

[+

Curve

+|

Navigating to the Ambient_day_night blend
container using the Project Explorer - Browser

Once an object has been added, its location in the hierarchy is updated and the
action properties are available for adjustment.

33

Setting the Ambient Stage

LG Stop_Ambient_day_night - Event Editor

MNotes:

Mame: E Event ID
Stop_Ambient_day_night

Event Actions

Remove

Ambient_day_night Game object

Location in Hierarchy

Action Properties

Delay Stop

Fade out time

Curve

An event created using the Stop action in conjunction
with the Ambient_day_night blend container

After events have been created, they can be integrated into the game engine so that
they are called at the appropriate times in the game. Because of the abstract nature
of events, their components can continue to be fine-tuned within the authoring
application throughout development without having to re-integrate them into the
game engine.

Section Summary

Adding blend tracks gives you the power to order and Crossfade objects and to
modify dynamically them with game parameters within the blend container. The
addition of events and event actions determine which sound, music, motion, or
dialogue is played and how it will play at any particular point in the game. As the
sun sets after a long day of travel, and the sound of birds is replaced with crickets
and the occasional wolf howl, the benefits of this dynamic ambience can really be
appreciated.

34

Setting the Ambient Stage

Sound Emitters in the Game World

With a looping background in place that changes based on the time of day, we can
focus on adding positional sounds at specific locations in the forest to help fill in the
environment, things like rivers, waterfalls, fire pits, and birds in trees. We’ll begin by
setting up several random containers that can be used to add further definition to the
world.

= -- Ambient Emitter
(+] ==. amb_fire_campfire

2 amb_tree_rustle
amb_wind_cave
amb_wind_cliff

Prepared sounds for use as 3D Emitters

Creating Attenuation ShareSets

The fundamental difference between the previous ambient background
implementation and the explicit placement of a sound in 3D space is in the way
sound changes based on the listener position. A listener is a virtual microphone

in the game that helps assign sounds to particular speakers to simulate a 3D
environment. Attenuation ShareSets can be authored to control the distance based
playback of sounds in relation to the listener.

’3 Designer Note

The Attenuation Editor allows you to define the distance-based
attenuation properties for a particular object. By creating a series of
curves to define the relationship between specific Wwise properties, such
as volume and low pass filter, and the distance between the emitting
source and the listener, you can simulate sophisticated distance-based
attenuation for the sounds, music, and motion in-game. You can further
refine attenuations using sound cones, which simulate attenuation based
on the orientation of the game object in relation to the listener.

Game objects are the central concept in Wwise because every event
triggered in the sound engine is associated with a game object. A game
object generally represents a particular object or element in your game
that can emit a sound, including characters, weapons, ambient objects,
such as torches, and so on.

35

Setting the Ambient Stage

Creating and Establishing Generalized Attenuations

By selecting the default work unit from the ShareSets tab in the Project Explorer, a
new attenuation can be added from the Project Explorer toolbar by clicking on the
game parameter icon. Alternately, an attenuation can be created from the contextual
menu for an attenuation work unit or by using shortcut keys.

Project Explorer Edl <

Audioc Ewents SoundBanks Gam

m o)
o @ Effects

= @ Attenuations
= (M Default Work Unit*

= Wew Attenuation

Adding a new attenuation ShareSet

Creating generalized attenuations that can be used in many scenarios is a good place
to start. Adding further attenuations that address specific distance-based problems
or special effects can be created on an as-needed basis throughout the course of the
project.

We'll begin by defining generalized attenuations for Ambient Emitters: Large,
Medium, and Small. We'll also imbed some information regarding distance, within
the attenuation name, in order to give some indication of what their intended use
is. When working with a naming standard throughout your project, it is important
to try and adopt some conventions that will be clear to people who may be working
with sound objects, events, game syncs, or ShareSets you have created.

Project Explarer NlE)
Audic Events SoundBanks Game Syncs ShareSets [ERER

ul e
= @ Effects
= @ Attenuations

M Default Work Unit
= (M Ambient
= ambient_emitters_large_5_30
= ambient_emitters_medium_3_15
= ambient_emitters_small 0 5

Project Explorer ShareSets showing a set of general attenuations

36

Setting the Ambient Stage

Once created, you can control the amount of reverb, LPF and spread by adjusting
the curve properties. Each curve defines properties based on the maximum distance
set for the attenuation. The maximum distance is distance from the emitting source
where the sound reaches its lowest level. The attenuation of the object remains
constant beyond the max distance.

[E) ambient_emitters_large_5_30 - Attenuation Editor
MName Shared by: MNotes
ambient_emitters_large_5_30

Curve Scaling: Linear

Curve Scaling: dB (Default)

Attenuation Se Exponential (Base 3)

Sine (Constant Power Fade COut)
Exponential (Base 1.41)

Inverted 5-Curve

Linear

Constant

5-Curve

Logarithmic (Base1.41)

Sine (Constant Power Fade In)
Logarithmic (Base 3)

S
~
~
\..\
S
AS
.
.
L]
v

Display Cursor Horizontal Line For Edited Curves (Y valug)

Max distance

Cone Attenuation Attenuation Pr
{Game-defined mode only)
olume
ry send volumes (Game-d... Custom
dliary send volumes (User-de... Custom
Low-pass filter Mone
High-pass filter MNone

Defining curve properties, max distance, and the attenuation feature set

Subscribing Sound Objects to an Attenuation

Now that we have established a few generalized attenuations for ambient emitters,
any level of the Actor-Mixer hierarchy can subscribe to them. Remember that any
children of the parent sound object will inherit the subscription unless overridden.
In the first example, we'll subscribe the ambient_tree_rustle sound object to the
ambient_emitters_small_0_5 attenuation so that we only hear trees when the listener
is within five game units of the emitter.

37

Setting the Ambient Stage

We begin by overriding the parent object (if any) and changing the sound to 3D in
the positioning tab. Clicking the Selector button (>>) allows you to navigate the
attenuation ShareSet hierarchy and select the attenuation you want to subscribe to.

B amb_tree_rustle - Random/Sequence Container Property Editor I
Mame
amb_tree_rustle 5 PF
General Settings Conversion Settings Effects Positioning RTPC States Motion Advanced Settings
Override parent
Center %
2D 30
Attenuation

Mew...

Mone

Ambient » H ambient_emitters_large_5_30

Position source [B ambient_emitters_medium_3_15

E ambient_emitters_small_0_5

User-defined

Game-defined
Update at each frame

Enable Spatialization

Subscribing a sound object to an attenuation

Now, when the ambient_tree_rustle sound object is played, it will obey the definition
of the ambient_emitters_small_0_5 attenuation and you will hear the soft rustling

of leaves when the listener is close to the emitter. If the properties of the attenuation
change, any sound object that is subscribed to it will also change.

Using Spread as Part of an Attenuation

In the next example, we'll take the same ambient_emitters_small_0_5

attenuation ShareSet and subscribe the ambient_fire_campfire sound object to

it. Additionally, we will set the mode to Define Custom in order to use the same
ambient_emitters_small_0_5 attenuation, but also Spread the sound at close distance
for that particular object.

38

Setting the Ambient Stage

30

Attenuation

Mode | Define

Define custom
|Ise Sharesets

Defining a custom attenuation mode

Motes

Reset Attenuation

Attenuation Settings RTPC

Coordinates

Cone Attenuation

nd volumes (Game-... Use Output Bus...
nd volumes (User-...

Iter None

High-pass filter Mone

Attenuation editor displaying custom properties

Now that the ambient_fire_campfire sound object has been changed to Define
Custom as its attenuation mode, it is now using a unique instance of the attenuation
that is not shared (or sharable) with any other sound object.

39

Setting the Ambient Stage

2 Designer Note
Spread specifies the amount or percentage of audio that is spread to
neighboring speakers, allowing for sounds to change over distance from
a point source at low values to a completely diffused propagation at high
values. For multichannel sounds, each channel is spread separately.

In the following image, the sound of the campfire is set to begin spreading between
the available speakers at half its maximum distance (2.5) until it is 100% spread at its
minimum (0).

40

Setting the Ambient Stage

Project Edit Views Layouts Audic Windows Help

Audio Events SoundBanks Game S Mame

amb_fire_campfire
General Settings Conversion Settings Effects Posiioning RTFC States Motion Advanced &
Override parent
nt Center %

~-~ Ambient_Background
~-7 Ambient_Emitter

20 D

Attenuation

Mode Define custom

Reset Attenuation

Attenuation Settings RTPC

Filtered
Filter

Coordinates
Max distance

Curves Cone Attenuation Attenuation

Output Bus volume
Auxiliary send volumes Use Output Bus volume
Low pass filter Custom

Spread Custom

W T T U U O U U W U m

Spread authored in the Attenuation Editor and modified by the distance parameter

Using Low Pass Filter as Part of an Attenuation

To add further realism to the sound of fire over distance, we can also enable a custom
low pass filter that will begin cutting high frequencies as the listener gets further
away.

41

Setting the Ambient Stage

[E) ambient_emitters_small_0_5 {Custom) - Attenuation Editor

MName Used by: MNotes

Reset Attenuation

Attenuation Se

Coordinates
Max distance 5

Curves Cone Attenuation Attenuation Previ
(Game-defined mode only)

Output Bus volume

Auxiliary send volum... Custom

Custom
Mone

High-pass filter Mone

Low pass filter authored in the Attenuation
Editor and modified by the distance parameter

Adjusting Cone Attenuation Properties

Cone Attenuation properties can be adjusted to further influence the directionality
of sounds that subscribe to an attenuation ShareSet. Doing so allows you to focus
sounds in the world by restricting the angle of sound propagation based on the game
objects orientation. This can be especially useful for vehicles, projectiles, and objects
that require a more focused positional sound.

42

Setting the Ambient Stage

Cone Attenuation

Inner angle

Quter angle

Max attenuation

Low pass filter

Enabling Cone Attenuation properties

Section Summary

Attenuations are specific sets of rules that determine how the sound of objects will
change over distance within your game. They're highly customizable and can be
used as creatively or realistically as your vision requires. Whether you strive for a
heightened sense of reality or a creative impressionistic aesthetic, the flexibility of
attenuations allows you to tailor the sonic propagation palette to your needs.

43

Setting the Ambient Stage

SoundSeed Air -Wind

Whether you find yourself at the edge of a cliff overlooking the path ahead, or
standing at the mouth of a dungeon thinking about what might be lurking in
the shadows, the sound of wind can help add an epic tone to the situation. The
SoundSeed Wind plug-in has been created as a runtime-efficient solution to the
challenge of authoring dynamic wind elements.

The SoundSeed Wind plug-in is a Wwise source plug-in that generates wind sounds
as they pass through and around objects. These sounds are generated by using time-
varying parameter sets to drive a synthesis algorithm. No source audio files are
necessary as the wind sounds are completely synthesized. SoundSeed Wind allows
you to save memory in-game because there is no longer a need for the long looping
wind ambience .wav files that would have traditionally been used.

SoundSeed Wind emulates the flow of wind through a scene; the direction specifies
the point of entry of wind flow on to a scene. Thus you should expect pressure waves
to hit the deflectors closest to the entry point first. The flow will then propagate
through the scene as it is pushed by incoming wind. As it propagates, you will hear
deflector objects that are placed farther from the entry point as they encounter the
oncoming pressure wave. Note that higher wind speeds at the entry point push the
flow at a quicker rate than slower speeds.

The following illustration demonstrates a typical scene where wind and a series of
deflectors are defined using a set of properties. Deflectors will appear smaller or
larger in size and lighter or darker in color, depending on the frequency and gain
property values assigned to them.

44

Setting the Ambient Stage

Deflector and wind properties

Wind Properties
- Speed

- Direction

- Wariability

- iustiness

Deflector Properties
- Frequency

- factor

- iFain

The biggest benefits to synthesized wind are the ability to dynamically manipulate
the wind model in real time, the randomness of generating sound differently

every time, and the memory savings incurred by removing audio content from the
equation. What would normally have taken a many seconds long audio file can now
be replaced by realistic models authored within Wwise. These authored sounds

are further modifiable by game parameters at runtime, as well as from within the

authoring application while connected to the game.

Adding the SoundSeed Wind plug-in to a new Sound SFX is accomplished in the
same manner as the silence plug-in covered in the ambient chapter.

= @ Actor-Mixer Hierarchy New Sound SFX - Contents Editor - no child
™ Default Work Unit
= 1 Ambient

MName

Add Source ==

CrankcaseAudio REV
SoundSeed Air
Wwise Audio Input
Wwise External Source
Wwise MP3 Input

| Whwise Silence
Wwise Sine

SoundSeed Wind
SoundSeed Woosh

Adding SoundSeed Air Wind to an empty Sound SFX

45

Setting the Ambient Stage

SoundSeed Wind - Deflectors

The first step in creating a wind model begins with the placement of a deflector

(or deflectors), which is used to generate wind as it passes through and around the
objects. The Source Plug-in Editor can be accessed in the Contents Editor by double-
clicking the plug-in icon.

Mew Sound 5FX - Contents Editor - 1 child 7] [
Mame Wind speed Variability Gustiness Gain offset Motes
SFX Add Source ==
- | SoundSeedWind [0 [l 025 [j0 05 0 -

Wind Source plug-in icon

The attributes available include:

+ Frequency: Represents the size of the deflector.

+ Qfactor: Is used to simulate deflector surface type.
+ Regular (high Q) /round or irregular (low Q)

+ Gain: Control of the amplitude of each deflector.

46

Setting the Ambient Stage

Mame

SoundSeed Wind

etings RTPC

LE R]

53

5.67

[45]

L%

Deflector positions

Yo

Maximum distance

Positioned deflectors

SoundSeed Wind - Properties

Like any tool, you can experiment to create and discover the sound you want. For
both wind and deflector properties, a fixed value can be set along with a positive or
negative deviation. All of these properties can be further automated over time, by
adding any number of points in the curve editor.

47

Setting the Ambient Stage

[

Source Plugin Notes Wind intended for Ciff

Properties
Time
Wind speed Duration

Direction Duration random

Variability 7 Playback rate I

Gustiness
Frequency shift
Q) factor shift

Gain offset

Wind properties and property automation using the curve editor

The Playback rate can be modified using an RTPC in the Time section of Properties,
as can any property with an RTPC indicator. Looping needs to be enabled in the
General Settings tab, just like any sound object, while fixed parameters for loop
duration and additional random duration are set in the Time section.

48

Setting the Ambient Stage

Time

Curation

Duration random

Playbadk rate

Properties for time related functionality

SoundSeed Wind - RTPC

With properties mapped to game parameters, you can use information from the
game to control various aspect of the wind sound. Imagine using the player velocity
to control the wind speed as they plummet through the air after a successful jump, or
mapping the gusts to an altitude game parameter that changes as the player ascends
along a mountain pass. By bringing parameter control to your wind models, you can
dynamically represent and better reflect the intention of the gameplay and scenario.

49

Setting the Ambient Stage

Ambient Summary

In this chapter we have established some fundamental processes for building
dynamic and varied soundscapes. Many of the techniques covered in this chapter
will continue to inform the rest of this document and serve as the building blocks of
interactive audio.

Throughout this chapter we have:

+ Created various types of sound objects

+ Used sound objects as building blocks for an ambient soundscape system
+ Established looping backgrounds

* Created a system to randomly playback individual ambient elements

Stepped through the process of:

+ Importing simple sounds to containers

+ Using blend containers to sum and playback multiple sound objects
simultaneously

+ Creating a game parameter that can be used to modify properties
+ Using the Time_of_Day parameter to Crossfade between containers

Also touched on:

+ Using attenuation ShareSets to manage distance based falloff
+ The use of SoundSeed Air - Wind to author realistic sounding dynamic wind

+ Leveraging paths using the Position Editor to randomly position individual
ambient elements in 3D space.

And created the following objects:

*+ Looping background random containers.

+ Ambient_day_night blend container that Crossfades between content using blend
tracks based on a time of day game parameter.

+ SoundSeed Wind models to be used as positional sound emitters.
*+ Generalized attenuation ShareSets for ambient emitters.

50

Setting the Ambient Stage

Ambient Additional Resources

Wwise Knowledge Base - How does Wwise handle multichannel sources with 3D
positioning?

Wwise Knowledge Base - How do I simulate a sound that is not a point sound
source?

Video Tutorial - Using the interface

Video Tutorial - Importing Audio Files

Video Tutorial - Building Sound Hierarchies
Video Tutorial - More Learning Resources
Video Tutorial - SoundSeed Air Wind Overview
Video Tutorial - Using the Blend Container

Video Tutorial - Relation between Sound- Source and Audio File

51

http://kb.gowwise.com/questions/206/How+does+Wwise+handle+multichannel+sources+with+3D+positioning%3F
http://kb.gowwise.com/questions/206/How+does+Wwise+handle+multichannel+sources+with+3D+positioning%3F
http://kb.gowwise.com/questions/51/How+do+I+simulate+a+sound+that+is+not+a+point+sound+source%3F
http://kb.gowwise.com/questions/51/How+do+I+simulate+a+sound+that+is+not+a+point+sound+source%3F
http://www.youtube.com/watch?v=XYE_IrHeEkM&hd=1
http://www.youtube.com/watch?v=1ICV_U3NoUg&hd=1
http://www.youtube.com/watch?v=IXOVdE3o7Lw&hd=1
http://www.youtube.com/watch?v=TB-pWC0XLho&hd=1
http://www.youtube.com/watch?v=vN5NDfT7tXU&hd=1
http://www.youtube.com/watch?v=uzZCBi6CSLQ&hd=1
http://www.youtube.com/watch?v=KWR99iBXj3I&hd=1

Chapter 2. Establishing Character

L o 1 PO 53
Footsteps and Movement - Establishing Needscccccocceeeeverneniininnennienenienens 54
SIMPLE STEPS ettt s 54
Switching System INtroductioncoceeeeveriereinieniienenenceeeetesee e 56
Defining SteP TYPE weveeveriiiiiieeieeeertet ettt st 57
Defining SUrface TYPEccoeevveriiririenienieieneceetest ettt 60
Defining Character TYPecccuevervierierieriiniererienteste ettt 62
All TOGEther NOW ...oouiiiiiiiiieiieiertet ettt 63
MOVEIMENT ..ooniiiiiiiiiiiiiiiiiii e 64
Defining Armor TYPE ..eecvevievirieriiieeterieeteeteteete ettt s 64
Creating the Movement EVEntcccccevievirveniieniineniienieeeeeneeeseeseeee e 65
Character SUMMATYccceeverieririierieniterteetesre et ste st etesreesse st e sstessestesseesesmnens 67
Character Additional RESOUICESccceeuiruiiiiiiiiiiiiniininicicceeee e 69

52

Establishing Character

Overview

From the hero’s first steps through the forest, to the upgrading of armor after a
dungeon crawl, movement sounds help to anchor the player firmly in the game
world. While the content demands of character sounds can vary wildly across
different game types, the fundamentals remain consistent across any genre.

In this chapter we'll walk through the following process:

* Creating player and Non-Player Character (NPC) movement sets.
+ Understanding switch groups, switches, and how to use them.
+ Establishing multi-level switches to manage:

+ Surface Type

+ Player Type

+ Step Type

Character sounds persist throughout every area and scenario of the game world.
Special care and handling should be used when defining the aesthetic and
implementation that result in sounds heard frequently throughout gameplay.
Thankfully there are several different ways to approach movement sounds for any
situation.

53

Establishing Character

Footsteps and Movement - Establishing Needs

To establish audio content needs, it's important to understand a few things about
how to best support gameplay when it comes to movement sounds. You can easily
create a simplified step system, but a varied system produces a better experience. The
importance of varied footstep sounds in a game can be a delicate balance of finding
the right places to put resources without ending up with a system that uses up all of
the available memory.

Think about the following questions to help you determine how extensive the
footstep system should be:

* How many step types will characters have? (Walk, run, scuff, turn...)

+ How many surface types need to be represented with sound? (Dirt, stone, sand...)
+ How will footstep sounds be triggered? (Animation, programatically...)

+ How often will you hear footsteps for an extended period of time? (2-5 minutes,
10-20 minutes...)

Simple Steps

A simplified footstep system might consist of a randomized container of individual
footstep audio files played each time a characters step reaches a certain frame of
animation. These animation-based footsteps are usually marked (or tagged) with

a Wwise event for each frame of animation, where the footstep is meant to play
back a sound. Different types of steps such as walk, run, turn, scuff, jump, land, etc.
would then be explicitly tagged to a frame of animation, corresponding to an event
comprised of the correct sounding steps.

= na fs_Hero Forest run
N
N
h-'
o

Fs_Hero_forest_walk
N
h"
o
N

Simplified footsteps implementation

54

Establishing Character

While this technique may still have its place in games where there are few footsteps,
the simplified system quickly shows its limitations because of its recognizable

repetition and the inability for sound designers to manage variables from within the
authoring application.

55

Establishing Character

Switching System Introduction

Switches represent the different alternatives that exist for a particular game object
within the game. Sound, music, and motion objects are organized and assigned to
switches so that the appropriate sound or motion object will play when a change is
made from one alternative to another in game. The Wwise objects that are assigned
to a switch are grouped into a switch container. When an event signals a change, the
switch container verifies the switch and the correct sound, music, or motion object is

played.

To take this a step further, we are going to build a cascading set of switch groups that
work in concert to play the correct footstep sound based on:

+ Step Type
+ Surface Type
+ Character Type

To unleash the full power of switches a programmer will need to define these in the
game engine to drive the system.

It’s common for every asset in a game to include metadata about what the asset is,

be it a rock texture or character model, along with the properties that define it. By
using these already existing definitions, or creating this data to control the switching
system, we move closer to a data-driven pipeline making things easier to manage and
scale throughout development.

Designer Note

Using information from the game to drive the switching system in Wwise
is something that should be discussed with an audio programmer as soon
as possible during the development cycle. There are great opportunities
to automate much of the challenge that comes with this aspect of
implementation.

56

Establishing Character

g Run
A0y Forest (Surface)jo

g waid

Character_OlJﬁ> ey VAT
d Run

\LD Dirt (Surface)_jb

!

SH1 Footstep

j Forest (Surface)

(

sCharacter_02

Dirt (Surface)

Multi-level switch system showing switch between:
character type, surface type, and step type.

While seemingly complex compared to the simple method of footstep
implementation, the flexibility of using information from the game allows for greater
control of the resulting sound and puts creative control in the hands of the sound
designer.

Defining Step Type

We'll start by creating a new work unit for our footstep switch and add a Switch
Group for Step_Type to change between walking and running switches. By selecting
the new Footstep_Switches work unit and then clicking the switch group icon in the
Project Explorer toolbar, a new switch group is created.

57

Establishing Character

Audio Events SoundBanks Game Syncs

0 — ME

= ® Switches
M Default Work Unit
= (N Footsteps_Switches
Mew Switch Grou

Creating a switch group in the “Footstep” switch work unit

Once the new switch Step_Type switch group has been created, switches can be
added by selecting the new switch group and then clicking the switch icon in the
Project Explorer toolbar. New switches are created: one for each step type: Walk and
Run. Alternately, switches and switch groups can be created from the contextual
menu or by using shortcut keys.

"Project Explorer

Audioc Events SoundBanks Game Syncs

O

= # Switches
(M Default Work Unit

= (M Footsteps_Switches
= |5 Step_Type
O Run
O walk

Creation of the Step_Type switch group and corresponding Run and Walk Switches

A new switch container which contains both run and walk random containers can
now be created.

58

Establishing Character

= N Character
= - fs_Hero_Forest_Step_Type

==. fs_Hero_forest_run
fs_Hero_forest_walk

A switch container containing both run and walk random containers

The switch type can then be defined by using the switch type Selector button (>>)
and selecting the new Step_Type Switch Group (1). Next, the walk and run random

containers can be assigned by dragging and dropping them to the appropriate Switch
in the Assigned Objects area of Content Editor (2).

R fs_Hero_Forest_St=p_Type - Switch Container Property Editor 2]

Notes Thig Switch Container is set up to switch based on StepType
-

ption Advanced Settings

Initial Delay Play Mode

Step
fi P

Continuous

Switch Type

Group

—H

Fade In
Hero_forest_walk st only Walk

&1 fs_Hero_forest_un 1st only

Adding the Step_Type switch group and assigning objects

Auditioning the different step types can be done through the Transport Control.
After selecting the fs_Hero_Forest_Step_Type switch container by double clicking it,
clicking the play icon or pressing the spacebar will play the object. Setting the switch
can be done from the game syncs section of the Transport Control. When selected,
any associated game syncs available for the object will be displayed.

+zr fs_Hero_Forest_Step_Type - Transport Control

Criginal Reset Al = States RTPCs Step Type Run

PF Only Switches | Triggers

Transport Control showing the selected switches game
sync and available switches for the selected game object

59

Establishing Character

Defining Surface Type

One of the greatest potentials for diversification, and something that immediately
communicates a sense of place to the player, is the inclusion of different footstep
surface types. While these may be represented in the game visually, it may take extra
effort to communicate information about the surface type a character is traversing as
a switch. Ideally the game engine has a way to specify the surface type of a traversal
area, and this specification can be posted to Wwise as a switch.

Programmer Note

There is a helpful footstep integration example that comes as part of the
Wwise Programmer SDK.

Designer Note

Once surface type is communicated to Wwise, there are other
applications and uses for this information. If, for instance, you were
building a dynamic rain system, you could use surface type to change
rain drop impact playing back positionally from different surfaces in the
game world. Also, most physics impact sounds benefit from knowing the
surface material being impacted. As an example, the sound of a wood
plank falling on dirt will have a much duller sound than on concrete.

As in the previous section, we’ll create a new switch container and subscribe it a
new Surface_Type switch group (1). We can then add the random containers to
the appropriate switches for either dirt or forest in the assigned objects area of the
Content Editor (2).

60

Establishing Character

{E fs_Hero_Surface_Type - Switch Container Property Editor
Name Notes This Switch Container is set up to switch based on Surface Type
Surface_Type M 5 PF

@ Master-Mixer Hierarchy

= @ Actor-Mixer Hierarchy ettings s Effects Pesitioning RTPC States Motion Ady

High-pass filter
1] 0

fs
" Interactive Music Hierarchy
Fade In Fade Out

Hir fe_Hero_Di PF 1]

- fs_Hero_Forest_Step_Tyr PF 0 Hi

i

Adding the Surface_Type switch group, and assigning objects

Using a multi-level switching system contributes to an organized and consolidated
working methodology which is supported within the Wwise hierarchy. It also helps
to keep the implementation clear and concise. Furthermore, switches can be added
to switch groups as new types become available in the game, which makes scaling a
straightforward endeavor. As an example, if we want to add an additional switch for
the Stone surface type, we can add it to the switch group, and it will show up in the
Assigned Objects section of the Contents Editor for any sound object subscribed to
the Surface_Type group.

gned Objects

Adding an additional switch to an existing switch group

61

Establishing Character

Let’s say the sound content for the Stone footsteps hasn’t been delivered yet. We
can temporarily use any available audio content until it is ready to be replaced.
Temporarily assigning content allows for immediate feedback and helps validate a
working system. This can be further verified by looking at the capture log returned
from the game as part of the Wwise Profiler. (See Optimization 10.4 Understanding
the Different Types of Profiling in Wwise)

This level of abstraction also allows you to share content between Switches and,
when combined elementally, can produce additional variations without the need for
additional content. For instance, combining Dirt and Stone sounds could produce a
dirty/stone surface type variation using content that already exists.

Assigned Objects

Adding multiple sound objects to a single switch

Defining Character Type

Taking this a step further, we can also add a Switch Group for the Character_Type:

= (M Footsteps Switches
B | Character_Type
O Grue
O Hero
= i | Step_Type

O Run

O walk
Surface_Type
O Dirt

O Forest

Character_Type switch group and switches

62

Establishing Character

All Together Now

We now have switching information communicated from the game to Wwise for
three different aspects of character sound:

+ Step Type
+ Surface Type
+ Character Type

The combination of these switches when the Footstep event is triggered by the game
will cause a sound from the correct character, step and surface type sound object

to be played. Now instead of having multiple events to keep track of, we can simply

pass a single event for a 'footstep' from the game and let switches handle the correct
playback of sound as defined by the game.

Designer Note

Another technique used sometimes at the content level is the separation
of heel and toe variations. This adds further diversity through
randomized combination and, if the content is designed appropriately,
can exponentially increase the variations and further reduce the chance
for repetition. By setting up a sequence container with a randomized
Heel container (1) followed by a randomized Toe container (2), each
step can be composed on-the-fly when a footstep is requested. Further
memory savings may be possible if you're able to share heel or toe
components between different surfaces. By working elementally with the
techniques available within the Wwise authoring application, you can
increase variation and reduce your memory footprint, which is a winning
prospect for any development.

i fs_Hero_stone_Run - Contents Editor - 2 children
Name Volume Pitch Low Pass

5! fs_hero_stone_run_heel 1] fs_hero_stone_run_heel

fs_hero_stone_run_heel_01

fs_hero_stone_run_heel_02

fs_hero_stone_run_heel_03

fs_hero_stone_run_heel_04

ts_hero_stone_run_toe
fs_hero_stone_run_toe_01

fi} fs_hero_stone_run_toe = s

fs_hero_stone_run_toe_02

fs_hero_stone_run_toe_03

fs_hero_stone_run_toe_04

1
2
EL
4
5
6
7
8
9
1

1]

Sequencing heel and toe to reproduce a single footstep

Regardless of the level of detail your game and implementation requires, Switches
provide an efficient way to deal with groups of content whose playback is dependent
on information from the game engine.

63

Establishing Character

Movement

Another key aspect to movement sound is the sound of clothing material as a
character travels through the world. Whether it's age-old leather, chain-mail, or
plate style armor, the distinguishing characteristics add to the footstep sounds and
help bring an additional level of believability. The sound of movement is especially
important if different types of wearables can be changed or added during the course
of gameplay. Changing out the sound whenever possible helps to reinforce a choice
made by the player and adds to the level of realism throughout their experience.

Defining Armor Type
Similar to the switching system implemented for footsteps, we'll use the

Character_Type and Step_Type switches in addition to a new switch for
Armor_Type.

= B Switches |2 Armor_Type - Contents Editor -
(N Default Waork Unit
= M Footsteps Switches

& Armor_Type
O ChainMail O MetalPlate

Marme

O Leather

O Leather

O MetalPlate 0O ChainMail
Character_Type

step_Type

Armor_Type switch group and switches

With each of these switches being used to drive the switching system, the hierarchy
can be organized to switch between appropriate sound content.

= (/| Character
{ir Footstep_Character_Type
ract e Mame Play W Assigned Objects

ir fol_Hero_Leather Step T | PF ' 1stonly Leather

:E Movement_Hero_Armor_Type - Contents Editor - 3 children

e fol_Hero_MetalPiate. Ste| ~ PF 1stony | T

o ctalPla - MetalPlate
ol - fol_Hero_ChainMail_Type PF 1zt only

= i Movement_Hero_Armor 0
- v {8 _ChainMail_Type

ChainMail

i

Movement switches with assigned step types

64

Establishing Character

Creating the Movement Event

Once we've got everything switching appropriately and all the content in place, it's
time to add the parent movement switch container to the footstep event using the
Play action.

Design Note

Depending on the sound content for movement, playing the armor
material sound simultaneously with the sound of the footstep may not
be desirable. In situations where it is preferable to give the footstep
some room to be heard, the delay property can be used as part of

the movement play action. Further adding a fixed delay offset to the
movement sound, in addition to delay randomization, increases the
randomness and lends itself to a more realistic representation.

Project Explorer E Play_Footstep - Event Editor
Audio Ewents SoundBanks n- Motes:

Mame:
= i@ Events RNt
M Default Work Unit

™M Ambient
= M Characte

LE ooistep No. PF | Actions Lbjects Scope

= @ Dynamic Dialogue Flay Game object
M Default Work Unit

Event Actions

Flay Movement_Character_Type Game object

Location in Hierarchy

Play - Randomizer (Delay)

Action Properties
Delay Play Probability
Fade in time
o . 2 S 100

Curve
Enable .

Movement switch and delay offset properties

Using this technique we can better represent the sound of movement between
footsteps, it also adds a feeling of variation and uniqueness to each footstep event.

65

Establishing Character

Other switch specific functions, such as the ability to drive switches based on game
parameters, continuous switch mode, and fade behaviors are additional techniques
for creative implementation. Furthermore, switches can be a handy organizational
tool and a convenient way to harness game information as part of a streamlined
workflow.

66

Establishing Character

Character Summary

Throughout this chapter we’ve come to a greater understanding of switch groups,
switches, and their use as part of a system that works in conjunction with game
information. The strength of building a system based on information from the game
is in the ability to change, control, and manipulate content within the tool, without
changing code. It also puts control over behaviors independent of the game in the
hands of the sound designer.

Throughout this chapter we have:

+ Discussed establishing a simplified model of footsteps.

+ Developed an understanding of switch groups, switches, and their use.

+ Discussed the randomization of properties within a sound object.

* Arranged containers within the assigned objects section of the Contents Editor.

Stepped through the process of:
+ Creating sets of player and Non-Player Character (NPC) footstep random
containers based on:
+ Character type
+ Surface material type
+ Footstep type

+ Creating sets of player and Non-Player Character (NPC) movement random
containers based on:

+ Character Type
+ Footstep Type
+ Armor Type
+ Establishing switches to manage:
+ Surface Type
+ Player Type
+ Step Type
+ Creating a multi-level switching system for footsteps and movement.

Also touched on:

+ Using delay offset in the Event to introduce natural randomness in movement
sounds.

Throughout this section we have created the following objects:
+ A multi-level switching system that determines the character, surface, and step
type when the footstep event is played.

+ A multi-level switching system for movement sounds with randomized delay
offset in the footstep event.

67

Establishing Character

A footstep event comprised of play actions for both footstep and movement switch
systems.

68

Establishing Character

Character Additional Resources

Wwise Help > Where to Begin? > Wwise Fundamentals > What are Game Syncs? >
Understanding Switches

Wwise Help > Interacting with the Game > Working with Switches

Wwise SDK - Windows » Sound Engine Integration Walkthrough » Integrate Wwise
Elements into Your Game » Integrating Switches

Video Tutorial - Creating Footsteps using Random and Switch

69

http://www.youtube.com/watch?v=ldWjVbtSX_8&hd=1

Chapter 3. Preparing for Combat

OVETVIEW .ttt s re e s e e e at e ssaesbe e s aaeeneesmnesanees 71
Defining Sound Sets for Weapon TYPesccceevuerieneriienienienieneereneesecreeee e 72
SoundSeed Air - Whooshcc.coouiiiiiiiiiiiiicceececcee e 73
Understanding IMPACEcc.eeeevuiiierieninienieieeteetesteetesie ettt 78
Defining Weapon TYPe ...cceevierieriinieiieneeieniesieeteetesre ettt 78
Weapon Impact SyStemccceevviiviiiiiiiiiniiiiiiiniiciecccccree 79
Attenuations for Player vs. NPCcccoviiiiniiiiiiiiieeietceeeetereeesee e 81
HIGh ALRT ettt st sb et s 81
Listener Considerationsceceeeeeruereerieerieneenersteneesseesseseessesssesseessessesseenne 81
Combat SUMMATY ...oouiiiiiiiiriiiieeeeeee ettt st 83
Combat Additional RESOUICESccceruieruiriierieniiiienieieeteet et 84

70

Preparing for Combat

Overview

The sounds of combat serve as punctuation marks along the journey, as the hero
battles across the ambient soundscape we've created thus far. With each new
encounter, each enemy variation, each weapon upgrade, sound has the ability to
reward the player with dynamic audio that equals the unfolding drama on-screen.

This chapter will take you through the process of:

+ Defining sound sets for different weapon types.

+ Generative weapon swings using SoundSeed Whoosh.

+ Understanding different implementation techniques for impacts.
* Attenuations for player vs. NPC.

Starting with a list of available weapon types is one way to approach the sometimes
sizable task of combat sound. Once the list has been defined, it's important to
understand the different ways that weapons will be triggered, and how to organize
them within the project.

Some questions to ask about combat:

+ How will combat sound be triggered by the game engine?
+ Do most of the combat actions rely on the animation system?
+ Is hit detection for impacts handled separately from animations?

When locked in mortal combat with a foe of ill repute, one of the roles that sound
plays is in communicating success or failure for each attempted strike. Once you have
determined how combat sounds will be played back, you can make sure the actions
are represented with the appropriate sound.

71

Preparing for Combat

Defining Sound Sets for Weapon Types

At the basic level, you can usually count on the playback of swings and impact to
share the same implementation technique across different weapons. Additional
accents and special moves may be unique; however, there is usually a logic to what
attacks can be shared by multiple weapons and which may require special handling.
Whether designing a single sound for each action, or working from a pool of basic
sounds that can be used as building blocks, how you approach the design often
begins with knowing how it will be implemented in the game.

In this example, we are going to use unique weapon swing sounds created using the
SoundSeed Air - Whoosh plug-in. The Whoosh plug-in generates sounds made as
a simulated object passes through the air. This makes it perfectly suited for close
combat weapon swooshes, bullet fly-bys, and other motion sounds.

We'll also take a different approach for weapon impacts and combine different
material type sounds, based on the surface type (or types) being impacted. This
methodology allows us to get a maximum of diversity out of a core set of audio files,
by utilizing the surface type switches already created for footsteps.

72

Preparing for Combat

SoundSeed Air - Whoosh

The SoundSeed line of plug-ins has been created to further extend the functionality
of the Wwise authoring application and provide a unique solution to a common
problem. When faced with the challenge of keeping repetitive sounds fresh, dynamic,
and varied, SoundSeed provides resource conscious creative tools that bring the
design of sound one step closer to the game.

The SoundSeed Whoosh plug-in is a source plug-in that generates sounds as an
object passes through the air. To create these types of sounds, the characteristics of
the deflector object are defined along with the trajectory movement and speed of
the object. No source audio files are necessary as the whoosh sounds are completely
synthesized. SoundSeed Whoosh allows you to save memory in-game because .wav
file variations are no longer necessary. Additionally, the Whoosh source can be used
to create variations using the multiple randomization features.

We’ll begin by creating the first of many sword swings that will be available to the
hero. It begins with an empty Sound SEX in the Combat work unit nested into the
Swing actor-mixer.

= M Combat

[
N
An empty Sound SFX in preparation for adding a whoosh source

We can now add a SoundSeed Air - SoundSeed Whoosh plug-in by navigating to the
Add Source Selector button (>>) in the upper-right corner of the Contents Editor.

fa% wep_swing_sword_01 - Contents Editor - 1 child
Mame Speed Frequency Q Factor Gain Motes
SFX Add Source ==

- SoundSeed Woosh - |

Whoosh Source plug-in Add Source Selector button (>>)

The Source Plug-in Editor can be accessed in the Contents Editor by double-clicking
the plug-in icon.

wep_swing_sword_01 - Contents Editor - 1 child
Mame Speed Frequency Q Factor Gain Notes

S Add Source ==

-« [SoundSeed Wioosh [0 [e ie e - |

Whoosh Source plug-in icon

73

Preparing for Combat

= (O x

Authoring Whoosh sounds in the source plug-in editor

Whooshes are a combination of one or many deflectors representing an object and
its traveling path. Deflector settings are used to determine the shape of the object,
while anchor defines whether the object is spinning or not.

+ Frequency: Represents the size of the object.

* Q: Is used to simulate deflector surface type. (regular [high Q]/round or irregular
[low QJ)
+ Gain: Control of the amplitude.

The object path is comprised of points in a path and defines the movement direction
of the object through space.

74

Preparing for Combat

&8 Soundsezd Woosh - Source Plugin Edtor [T

Mame Source Plugin Notes Woosh intended

SoundSeed Woosh for Dagger

Object path

Yo

Position reference

Deflector properties and object path

Any number of points can be connected to produce the desired travel path, which

appropriately pans based on speaker setup and the number of channels specified in
the Settings.

For the weapon swings, we'll be using the two channel setting in conjunction with
a path that traces an arc in front of the player from left to right. For the sake of the
example, we'll create Whoosh models for sword, axe, and dagger weapon types.

75

Preparing for Combat

= (M Combat
= Hir Swing Weapon Type

N wep_swing_axe 01
M* wep_swing_dagger_01
N wep_swing_sword_01

Prepared Whoosh sounds for use by weapon swings

’a Designer Note
1
Not just reserved for short duration swings, coupling a circular path with

a long time duration can add additional movement sound as a special
effect. Due to the generative nature, the simulation and resulting sound
will be different every time. Adding a randomized multichannel Whoosh
element as part of a spell casting effect could be used to further wrap the
player in a swirling maelstrom of sound, without having an impact on the
memory budget.

Similar to SoundSeed Wind, properties that control the object's movement can

be fixed, randomized, or parametrized via RTPC. The added ability to create
automated curves for properties allows you to add further movement and controlled
randomness to help sculpt whoosh sounds.

76

Preparing for Combat

Properties
I Time

i = . “I Duration

Object speed
B Frequency shift |] 0 . 23 . DUISHORSAGE

Q factor shift] 1.85

Gain offset f 0

Pasition reference (0,000)

Whoosh properties, automation curves, and time settings

Ignoring all of the memory saving benefits of generative sound design, there is an
incredible amount of creativity encapsulated in the SoundSeed suite of plug-ins.

By taking a common sound design tool and making it available as part of a game
audio authoring application, generative synthesis at runtime can help bridge the gap
between design and implementation. Add to this the ability to affect properties in
real time using game parameters and you have a winning combination of dynamic
flexibility and memory efficiency.

By establishing the weapon swing sounds within a single swing Sound SFX , the need
for content variation has been removed by leveraging the features in Whoosh.

77

Preparing for Combat

Understanding Impact

With the beginnings of a weapon swinging in place, we’ll move on to the finer details
involved with impact sounds and the bashing of bad guy skulls. Object impacts are
often handled with either a composite sound (meant to convey the emotional intent
of the impact) or by creating a multi-layered system (aimed at recreating the sound
of reality). The first decision about which direction to take lies in the type of game,
and what will best support the style and expectation of the player.

In a system that relies on a minimum of variation, it may be enough to simply play
a group of randomized audio files for an impact - for any weapon, on any surface.
Taken a step further, the weapon type could be used to determine the impact sound
and play, regardless of surface type. Still further, each weapon type could have a
different impact sound on each surface type in the game, making a sword impact on
stone sound different than dirt or an axe impact on wood.

Regardless of whether you choose to represent object interactions abstractly or by
embracing a model that skews closer to reality, the Wwise authoring application can
accommodate your decision.

Defining Weapon Type

In the continued pursuit of randomness and variation, we are going to build a system
that utilizes switches in a similar fashion to the previous footstep and movement
examples. Instead of focusing on character and step type, we’ll use weapon type in
conjunction with an expanded list of surface types to allow for an increased level of
detail.

Weapon_Type switch group and switches

This switch group will change based on the weapon type being wielded by either the
player or NPC and will be assigned a unique sound object for each type. Now that
there is an established switch group for weapon type, it can be used to implement the
swings created in the previous section by parenting them within a switch container,
setting the switch group, and assigning the objects.

78

Preparing for Combat

Fade In

X
o @ Interactive M

Weapon type switch group with assigned swing sounds

Weapon Impact System

It should be assumed that throughout countless battles our hero will inevitably taste
the sting of a blade. In order to add further detail to the impact system, we’ll add a
switch for flesh to the surface material switch group.

= |8 Surface_Type
Dirt
Flesh
Forest
Stone

Stone_Dirt

Switch for new surface type

Once switches have been defined in the game and material settings have been set, the
properties of the game object being requested will drive the switches and play the
appropriately assigned sound for the combination of weapon and material type.

4 impact_Weapon_Type - Switch Container Property Editor
W Name
Impact_Weapon_Type
ects Posiioning RTPC States Motion Advan
Tnitial Delay
i 0

C us
= @ Actor-Mixer Hierarchy
(U It Work Unit

Continuous

Low-pass filter High-pass filter Switch Type

| 0 Group

Fade In

=) — 1stonly Axe
B Interactive Music Hierarchy

st only i
Sword

H
Dagger

i}

1st only

Assigned weapon type objects

79

Preparing for Combat

B Impact_Sword_Surface_Type - Switch Container Property Editor

B | Name

Impact_Sword_Surface_Type

General Se

 Interactive Music Hierarchy

Fade In
£ imp_Sword_Ditt

imp_Sword_Forest
i imp_Sword_Stone

f imp_Sword_Flesh

Assigned surface type objects

With the escalating number of surface materials in today's games, you could
continue adding detail to the sound for as long as the memory budget allows. By
utilizing the previously mentioned technique [Character 2.2] for sharing different
surface material content between switches, you can help extend the content while
increasing detail. With thoughtful sound design and well designed systems, you can
overcome many limitations through the creative use of implementation.

80

Preparing for Combat

Attenuations for Player vs. NPC

Now that we have a fully switching impact system that can be used for any

defined weapon in the game, it's important to begin establishing and subscribing
attenuations to ensure that the sound appropriately falls-off over distance. While
we've already discussed simple attenuations in the Ambient chapter, they'll be put to
further use in helping to define the attenuations of combat sounds.

High Alert

Before the battle has even begun, there is an opportunity to alert the player of an
enemy's presence by allowing their idle sound and footsteps to be heard outside of
the range where they would attack. Using sound to inform the player of approaching
danger can help heighten awareness and prepare for the pending struggle. It

starts with knowing at what distance an enemy will attack, and continues with an
attenuation that allows the player to hear movement before combat begins. Let's
assume that an enemy will engage the player within 15 game units. By extending the
movement sounds' max distance for the attenuation to 20 game units, we can make
sure the player has time to equip appropriately for the oncoming altercation.

Listener Considerations

In most cases the listener is positioned at either the player or camera, or at some
(possibly parametrized) interpolation between the two. The sound changes based
on the proximity of the listener to the NPC, and the attenuation provides the falloff
properties. This scenario is widely used in 3D games and well understood in game
audio. However, choosing where to implement the listener in the game may require
special considerations for player sounds.

While some situations may benefit from being played back in 2D on the player (such
as surround magic effects), there are potential pitfalls that could cause undesirable
results, specifically, in the common scenario where the camera moves through the
world to highlight action taking place elsewhere in the environment. If a sound
playing from the position of the player is set to 2D when this happens, the sound
will persist even though the player is no longer part of the visual scene. In this way
it’s usually safest to continue treating the player attenuations in the same way we’ve
begun with NPCs, as 3D sounds.

While you may start out sharing several of the same attenuations, a unique
attenuation ShareSet can always be applied at any level of the hierarchy. Additionally,
you can create a custom attenuation that will apply only to a single object. Changing
the mode of a sound objects attenuation from Use ShareSets to Define Custom
applies a unique instance of the attenuation that is not shared (or sharable) with any
other sound object.

81

Preparing for Combat

30
Attenuation

Mode | Define custom

Define custom

|Ise ShareSets

Taking an attenuation ShareSet and defining custom properties for a sound object

While defining custom attenuations can be a good solution as an exception to the
rule, there is more power and transparency to creating ShareSets which are all
managed in one place.

Once you're gotten the feel for the way sound propagates in the game, you'll find
yourself instinctively using attenuation ShareSets you've created for new sounds. By
establishing well defined and flexible attenuations, a distance falloff model can be
created that suits the game.

82

Preparing for Combat

Combat Summary

In the Combat chapter we’ve been working on establishing swings and impact based
on weapon type. Along the way we looked into the functionality of SoundSeed
Whoosh to replace the traditional audio file variation model with a powerful
synthesis toolset. We also continued investigating the use of attenuations in
conjunction with listener positioning and how they can work together to positively
affect gameplay and help define propagation models.

Throughout this chapter we have:
+ Discussed the aesthetic choices involved in designing the sound of different
weapon types and implementations.

+ Discussed the use of generative weapon swings using SoundSeed Whoosh to
replace content based variations.

+ Exposed different implementation techniques for impact sounds.

Stepped through the process of:

+ Creating swing sounds for different weapon types using SoundSeed Whoosh.

+ Creating a switching system for weapon swings based on weapon type.

+ Creating a switching system for weapon impacts based on weapon and surface
type.

We've also touched on:

+ Scaling complexities of material based impact detection.
+ Using different attenuations for the player vs. NPC.
+ Considerations when choosing the position for the listener.

Throughout this section we have created the following objects:

+ Swing Sound SFX objects for sword, axe, and dagger authored with SoundSeed
Whoosh.
+ A weapon swing switch system based on weapon type.

+ A weapon impact switch system used to determine impacts based on weapon and
surface type.

83

Preparing for Combat

Combat Additional Resources
Video Tutorial - SoundSeed Introduction

Video Tutorial - SoundSeed Air Whoosh Overview

84

http://www.youtube.com/watch?v=d6UjgN23P_Y&hd=1
http://www.youtube.com/watch?v=P4cQi2tnyS8&hd=1

Chapter 4. Making Magic

L o 1 PO 86
Summing and Layering with Blend Containersccoccevveeveevienvienenneneenenneenes 87
Creating Distance-Based Blend Trackscocceeeeveeiieniininieninnienicneesenececeee 88
Setting up a Game Parametercccceeveerieriiiniinieineceee e 88
Crossfading Between Containers on a Blend Trackccccevvvevieniinncniinennen. 91
SeCtION SUMMATY euviiiiiiiiiiiieiieeteee et 92
Real-Time Parameter Control (RTPC) w.uuueeiiiiiiieiieiieeeceieeteteeeee e 93
Using Real-Time Effectsccceeviriiriiiiiniiiiieniceeecteeeeneese et 95
Unleashing Dynamic SYNthesiscocooeeverienirienieninenieecieeeeneee e 99
WWise SYNth ONe ...ooieriiiiiieiieeneteeeee ettt 99
MOAULATOTS ..ttt 103
Modulator LEO ...cc.cociiiiiiiiiiiiiinitcercrccenee e 103
Modulation Envelopeccocueveriiniininiienieinienceetceceeeeeeeeee 108

MaAgIC SUMMATY ..eeiiiiiiiieiieeieeeeere ettt ettt sr e e ne e s aeenes 114
Magic Additional RESOUICEScccueruieriierierienieiienienieetertesie ettt 115

85

Making Magic

Overview

Whether casting spells to fend off a grue attack, getting blasted by dark wizards, or
summoning succubus from the nether realms, the rules of magic have been handed
down from generation to generation by sorcerers older than time itself. You can
experiment with sound in the Wwise authoring application to deploy your sonic
alchemy and unleash a powerful torrent of audio mayhem.

This chapter will take you through the process of:

+ Summing and Layering with the Blend Container.

+ Using effects.

+ Using Real-time Parameter Control (RTPC).

+ Leveraging blend tracks as part of a distance based perspective model.

+ Using Modulator Envelopes and LFOs to diversify properties of a sound.
+ Creating a synthetic element using Wwise Synth One.

The approach for creating unique magic effects begins with inspiration. From
there, audio files and synthesis define the sound palette for the eventual effect.
You can seriously up the creativity quotient in your effects by taking individual
sound element variations, or layers of sound, and recombining them using blend
containers. Then draw on parameters from the game to add dynamic variability.

86

Making Magic

Summing and Layering with Blend Containers

As discussed in the Ambient chapter, a blend container simultaneously plays the sum
of its contents. By taking individual sound element variations, or layers of sound
design, and recombining them using the blend container, startling new effects and
composites can be achieved that help extend the content. This is especially true when

coupled with randomized properties or additional effects available at any level of the
Actor-Mixer Hierarchy.

= M Magic
= ¥ magic_blast_fire_blend

B =i magic_blast_base
B . =% magic_blast_fire

The Magic blend container is comprised of multiple random containers

87

Making Magic

Creating Distance-Based Blend Tracks

Another way to use blend tracks is to create a complex distance-based blend to
diversify perspectives or, simply put, to change the sound content based on distance.
This technique can be quite effective when implementing ranged weapons, moving
objects, or in this case, magic effects.

We’ll be creating a blend container that changes the sound of magic impact blasts
near the player, and from a far off distance perspective. When the magic blast event
is triggered, the perspective (or combination of perspectives) is played based on

the blast game object's distance to the player. So, the content will have more high
frequency detail and sense of danger at a close distance from the player and a slightly
low pass filtered and reverberant sound when far away.

Magic effects are often associated with particle or visual effects within a game
environment. While many particle effects are comprised of different techniques that
contribute to the resulting visual effect, there is usually a point of origin, referred to
as the game object that travels as the center of the effect in 3D space and can be used
to attach sounds. Using the distance to player as part of a dynamic effect can help
give a sense of movement to the sound and increase the dramatic effect by lending a
positionally significant modifier.

Setting up a Game Parameter

We can get information about the game object's proximity to the player from the
game engine and use it through a new game parameter called Distance_to_Player
throughout the project.

_I" Distance_to_Player - Game Parameter Property Editor

MName Notes
Distance_to_Player

Bind to Built-In Parameter

Interpolation

Mode Mone

Default

Setting up the Distance_to_Player game parameter

It's easy to get distance info and other values directly from the Wwise audio engine.
You can subscribe to a built-in value for the distance between the listener and the
game object from a list of built-in values calculated inside of the audio engine using
the "Bind to Built-In-Parameter" drop-down menu.

38

Making Magic

E Distance_to_Player - Game Farameter Property Editor
Mame
Distance _to_Player

Bind to Built-In Parameter

R tane Interpolation
mu

Elevation - Norne
Object-todistener Angle e

Ocdusion

Obstruction

Default

Binding the Built-In Distance value to the Distance_to_Player Game Parameter

The following built-in parameters are calculated by the audio engine and are
available to be bound to game parameters:

+ Distance - Distance to game object.

+ Azimuth - Horizontal angle.

+ Elevation - Vertical angle.

*+ Object-to-listener Angle - Angle between object's orientation and the listener.
*+ Occlusion - As set by the game on the game object.

+ Obstruction - As set by the game on the game object.

Interpolation can be used to apply a kind of "smoothing" to the values sent by the
audio engine. The modes (other than None) let you modify the rate (in Units) or
time (in seconds) when target values go upward (Attack) or downward (Release).
Adding an Interpolation Mode helps keep values from the game engine from
"jumping" or "stepping" too quickly which may cause, for example, a voice volume
to abruptly increase in volume. The Interpolation properties allow for controlled
transitions between Game Parameter values sent from the game or from within the
Wwise audio engine.

In this example, the behavior of the Distance_to_Player game parameter is modified
using the Interpolation properties available in the Game Parameter Property Editor.

89

Making Magic

ﬁ Distance_to_Player - Game Parameter Property Editor

MName

Distance_to_Player

Bind to Built-In Parameter

Interpolation

Mode MNone

Mone

Slew Rate
Filtering over time

Default

Setting the Game Parameter Interpolation Mode

Interpolation Modes can be set using the Mode drop-down list and include:

Interpolation

Mode None

+ Interpolation Mode - None: Jump straight to the target value.

Interpolation
Wb (Sewde |
Attack 50 Unitsfseconds

Release 50 Units/seconds

+ Interpolation Mode - Slew Rate: Limit the game parameter variation rate to the
specified Attack and Release rate. (Units)

Interpolation
Mode Fiteringover tme

Attack 1 Seconds

Release 1_ Seconds

+ Interpolation Mode - Filtering Over time: Filter the game parameter current
value to target 99.5% of the target value within the specific Attack/Release time.
(Seconds)

The Interpolation Mode for the Distance_to_Player Game Parameter will be set to
"Slew Rate" with a Attack (in Units) of 50 and Release (in Units) of 50 to produce the
desired effect.

90

Making Magic

Crossfading Between Containers on a Blend Track

Now that there is a way to track how far an object is from the player, we can use this
information to drive the Crossfade between various containers on a blend track
inside of a blend container we have named magic_blast_fire_distance_blend.

As we did for the blend containers created for the ambient system, a new blend
track will be created with a Crossfade enabled based on the new game parameter for
Distance_to_Player.

E magic_blast_fire_distance_blend - Blend Track Editor

Blend Container: | ¢
I distance

sfade Distance_to_Player

Creating a new blend track with Crossfade enabled
based on the Distance_to_Player game parameter

Randomized containers can then be added to the assigned objects area in the
distance blend track. As previously mentioned, the order of these containers in the
assigned objects section is reflected in their positioning on the blend track.

E magic_blast_fire_distance_blend - Blend Track Editor
Blend Container: | < New Blend Track

Name: distance

Adding containers to the blend track in the correct order

91

Making Magic

After the information is passed successfully from the game, the Distance_to_Player
game parameter controls the Crossfade between containers, playing only the
container (or containers) beneath the game parameter cursor.

* When the game object plays the magic blast event within 0-25 units from the
player, the magic_blast_fire_blend_near is heard alone.

* When the game object plays the magic blast event within 25-75 units from the
player, a blend of both perspectives is heard.

* When the game object plays the magic blast event within 75-100 units from the
player the magic_blast_fire_blend_far is heard alone.

"‘3 Designer Note
While similar distance-based blending can be done using multiple
attenuations, there are workflow benefits to managing these within blend
tracks.

Section Summary

We have successfully implemented magic blasts that change between audio content
dependent on the location and distance of the game object from the player. This
technique is best used when there is a need to represent different perspectives or
levels of detail at the content level. While simple filtering can also be applied to
help change the tone of the resulting sound, you can add richer levels of detail by
designing the content appropriately.

92

Making Magic

Real-Time Parameter Control (RTPC)

To push magic effects further into dynamic territory, you can employ Real Time
Parameter Control (RTPC) for any sound object in the Actor-Mixer hierarchy or
any audio bus in the Master-Mixer hierarchy. RTPC can be accessed in the Property
Editor for any sound object, and new modifiers can be added using the Selector
button.

Using the magic_blast_fire_distance_blend, a pitch curve can be added using the
Distance_to_Player game parameter as part of the object’s RTPC. The distance curve
value can be used to dynamically affect the sound of the magic blast by modifying
pitch based on the magic blast’s proximity to the listener. Similar results can be
obtained using RTPC within the blend track.

Name

magic_blast_fire_distance _blend

General Settings Source Settings Effects Posiboning (RTPC | States Advanced Setbngs 4

Coordinates
¥

RTPC using the Distance_to_Player game parameter to control the amount of pitch

93

Making Magic

RTPC further modifies properties of a sound object by opening dynamic possibilities
for making your content change based on information from the game. In this
example, we have taken and modified the magic blast, pitching it up as it approaches
the player. This gives the approach of the magic blast an immediacy that is reflected
by its pitch.

94

Making Magic

Using Real-Time Effects

In addition to the unique features within the blend container, Wwise ships with a
suite of DSP Effects that can be used to modify content after it’s been imported,
enabling additional sound design possibilities from within the authoring application.

Available in the Property Editor of every audio object, and additionally within the
Master-Mixer hierarchy, these effects can be added to modify sounds using fixed
settings or dynamically at runtime using game parameters.

’Q Designer Note
When effects are applied to a bus, all incoming audio data is sub-mixed
before the effect is applied. If a chain of effects is applied, the effects are
applied in the order in which they appear in the list.

Audio Data Mixer Effects

5.1 Mix EffectO Effecti

RTPC for effects can be found in the Effect Editor
after clicking the Edit button for an enabled effect.

magic_blast_fire_distance_blend - Blend Container Property Editor

Marne

sitioning RTPC States Mation Adwan:

Mame

2 Flanger Flanging|Heaw:

The Edit button is used to access the effect editor

95

Making Magic

The Effects Editor displays all of the settings of an enabled effect, including access to
any properties that can use RTPC.

Heawy _Metal - Effect Editor

Mokes

nce_hlend

RTPC

LFO
Depth
I']

== i Frequency

Spread Mode |[| Lefe-Right

W avefarm
Spread]| 0
Smoathing

P

The effects settings panel and access to the RTPC tab

From the RTPC tab, you can create relationships between effects settings and game
parameters to produce unique effects driven by information coming from the game.

96

Making Magic

(B8 Heavy_Metal - Effect Editor

— PF Shared by:

Heawvy_Metal magic_blast_fire_blend

Effect

Effect Settings RTPC

Remowe

Blend

Feedback

Feedforward

LFQ Depth

LFO Frequency

LFO Phase Offset

LFO Phase Spread

LFO PWM

LFO 5meothing

LFO Spread Mode

LFO Waveform

Output Gain
Coordinates Wet/Dry Mix

X

I~ Distance_to_FPlayer

(¥
s

RTPC settings added to the Distance_to_Player game parameter

Using game parameters in conjunction with DSP effect settings opens up a whole
new world of dynamic content manipulation. You can use the game parameters in
conjunction with effects in the following ways:

*+ Add a slight flange to a rushing river sound to make it sound eerie, only from a
distance.

*+ Add stereo delay to all vocalizations when the player is about to die in combat,
based on health.

+ Add tremolo to an air conditioner fan loop that changes,based on the rotation
speed of the fan.

97

Making Magic

Whether you're designing iconic spellcasting sounds that need to be instantly
recognizable or gaining diversity through recombination, the power of real-time
parameter control and dynamic DSP effects can create special effects that are only
possible within the environment of an interactive game world.

98

Making Magic

Unleashing Dynamic Synthesis

Another way to replace, augment, or supplement audio files is with the Wwise Synth
One plug-in. Synthesis provides a flexible and dynamic audio platform that doesn't
depend on system memory (RAM); it uses CPU to generate sounds at runtime
instead. Chances are good that you're already using synthesis as part of your sound
design process within a DAW. With the power of Wwise Synth One, synthesis can
become a part of your pipeline within the Wwise authoring environment.

Game Parameters, MIDI Messages, Modulator LFO, and Modulator Envelope can
be added as part of any Sound Object, Audio Bus, or Aux Bus RTPC and then used
to modify properties of Wwise Synth One, SoundSeed Whoosh, SoundSeed Air, or
any DSP plug-in. Being able to manipulate sound using synthesis at runtime gives
you greater flexibility to modify properties using parameters from the game or from
within the Wwise authoring environment.

Wwise Synth One

We'll begin by creating a magic_blast_synth_element that contains the Wwise Synth
One plug-in as part of the magic_blast_fire_blend created in Section 3.

Sound SFX containing the Wwise Synth One
plug-in inside the magic_blast_fire_blend

The Wwise Synth One plug-in can be added as an input source to a Sound SEX (or
Sound Voice) in the same way that the Silence plug-in was added in Chapter 1. To
begin, add a Sound SFX object to the default work unit by clicking the Sound SFX
icon in the Project Explorer toolbar. A new Sound SFX is created. Alternately, Sound
SFX can be created from the contextual menu or by using shortcut keys.

99

Making Magic

Project Explorer [1][Z]

@

= @ Master-Mibcer Hierarchy

M Default Work Unit
= @ Actor-Mixer Hierarchy
= (N Default Work Unit*
* iew Sound sFx

Creating a Sound SFX from the Project Explorer toolbar

After double-clicking to select the new Sound SFX, you can add the Wwise Synth
One plug-in using the Add Source menu in the Contents Editor.

New Sound SFX - Contents Editor - 1 child

Marme Freguency Mode BaseFrequency Motes

Add Source ==
= Wwise Synth One Base Freq... CrankcasefAudio REV
SoundSeed Air 3
Wwise Audie Input

Wwise External Source

Wwise MP3 Input

Wiwise Silence

Wwise Sine

Wwise Synth One I
Wwise Tone Generator

Creating a Wwise Synth One source plug-in for a sound object

The Source Editor can be accessed in the Contents Editor by double-clicking the
plug-in icon.

New Sound SFX - Contents Editor - 1 child 2/X
Frequency Mode BaseFrequency — Outputlevel
= Add Source ==

=& Wiwise Synth One Base Freq... 1000 | - |

Wwise Synth One plug-in icon

100

Making Magic

&g Wnise Synth One - Source Editor
Mame Source Plug-n
Whwise Synth One
| EffectSettings RTPC
' Input
Frequency Mode Base Frequency Base Frequency [
Osdillator 1 Osdllator 2 Moise
Waveform]| &i Waveform
Transpose

Level

PWM il PWM

Output

Mode I Mizx

Wwise Synth One - Source Editor

Designer Note

Features of the Wwise Synth One plug-in are described in Chapter 8 -
MIDI & Synthesis

We'll begin by creating an additional synthetic element for the
magic_blast_fire_blend Blend Container that will play in addition to the audio
files already established earlier in this chapter. This element adds to the synthetic
characteristics of the sound and is modified using a Modulator Envelope on the
Output Level property of the Wwise Synth One plug-in. Additionally, Modulator
LFOs and the Distance_to_Player Game Parameter will be used to modify various
properties of the Wwise Synth One plug-in in conjunction with a Modulator
Envelope.

Now add the magic_blast_synth_element that contains the Wwise Synth One plug-in
inside the magic_blast_fire_blend created in Section 3.

101

Making Magic

—| |f' Mn:ll:lll
magic_blast_fire_blend
==_ magic_blast |

dse

=2 magic_blast
o - -
N magic_blast synth_element

ba
ir

=

Sound SFX containing the Wwise Synth One
plug-in inside the magic_blast_fire_blend

The magic_blast_synth_element will start out with a low base frequency and a
combination of Triangle and Square waveforms. Each Oscillator is then further
transposed and modified using the Distance_to_Player Game Parameter to increase
the transposition as the magical blast gets closer to the player.

Designer Note

You can find more information on Game Parameters in Chapter 1:
Setting the Ambient Stage - Introduction of a Day and Night Cycle
Establishing a Game Parameter.

T8 Wwise Synth One - Source Editor
Mame Source Plug-in
Whwise Syrth One
Effect Settings RTPC
Input
Frequency Mode Base Frequency Base Frequency [600
Osdllator 1 Osdillator 2 Moise
quare Moise Shape |[| White Noise

-3600 Moise Level]| 596
4

Waveform [| Triangle Waveform

Transpose = Transpaose
p P

50

i8S
[
Lewel Il
i
ij

1
Il PAM
1l Invert

Invert

Mode (]| Mix

Wwise Synth One Base Frequency and Waveform properties

102

Making Magic

A2 NP 17X

Name Source Plug-in
Whwize Synth One

Effect Settings ~ RTPC

Distance_to

Coordinates

Wwise Synth One Oscillator 1 & Oscillator 2 Transpose property RTPC

Modulators

Parameterizing properties throughout a Wwise project can become a powerful tool
for dynamic creation. Imagine modifying the pitch of the amb_tree_rustle ambient
emitter loop by randomizing the properties of a Low Frequency Oscillator (LFO)

or varying the length of an audio file by applying an Envelope with a randomized
decay time to the voice volume. In addition to Game Parameters, there are a suite of
Modulators that can be used to modify an object's properties. These include: LFOs,
Envelopes, and MIDI Messages.

Modulator LFO

The Modulator LFOs (Low Frequency Oscillator) can be used to create a modulation
of property values over time. When added to an RTPC, a Modulator LFO modifies
the values of a property between a range of values. Additionally, the values of the
LFO properties can be further parameterized or randomized to achieve a high-level
of variability.

103

Making Magic

To diversify the synth for the purpose of the magic_blast_fire_blend element,
a Modulator LFO added as an RTPC to each Oscillators PWM (Pulse Wave
Modulation) property gives the sound extra "movement" and vibration.

o \Wwise Synth One - Source Editor
Mame Source Plug-in
Wwize Synth One
Effect Settings RTPC
Input
Frequency Mode Base Frequency Base Freguency
Oszdillator 1 Oscillator 2 Moise
Wavefarm |f| Triangle Wavefarm 5 e Moise Shape |f| Pink Moise
Transpose [-1402 Transpose = Moise Lewvel m 22

4

|ff ™ Tnvert [Invert

Qutput

Mode |I'| iz —_— Level |ﬂ_-5—

Wwise Synth One PWM (Pulse Wave Modulation) properties
attached to LFO (settings can be edited in the RTPC tab)

Designer Note

In Wwise, some properties are additive (Voice Volume, Voice Pitch,
and so on...), and some are exclusive. When adding an LFO on the
additive properties, the LFO modulation is added to the current value
of the property. When adding an LFO on the exclusive properties, the
LFO modulation replaces the current value of the property. Properties

modified by an LFO are represented by a dashed line ("-") in the Property
field.

104

Making Magic

Madulator LFQ (Custom)

"\ Modulator LFO (Custom)

Wwise Synth One Oscillator 1 showing the effective
range of the PWM property modulated by the LFO.

LFOs (Low Frequency Oscillator) are used to create modulation of property values
over time. The minimum and maximum RTPC values of the LFO Envelope in the
Sound Property Editor affect the base and top of the LFO (nil and peak values).
Swapping the min and max values effectively phase reverse the LFO.

The Modulator Editor can be access by double-clicking the Modulator LFO in the
RTPC dialog or by clicking the [...] button.

Accessing the Modulator Editor by double-clicking the
Modulator LFO in the RTPC dialog or by clicking the [...] button.

105

Making Magic

& Modulator LFO {Custom) - Modulator Editor PP 22X

Used by:

-

Modulator Settings RTPC
LFO
Depth Attadk
Frequency Initial Phase
Waveform Cime Scope
Smoothing

PUWM

Modulator LFO Modulator Editor

The properties of the Modulator LFO are:
* Depth
+ The amplitude variation of the oscillator (in percentage). Maximum amplitude
is 1.0.
* Default value: 100
+ Frequency
+ The number of cycles per second (in Hz).
* Default value: 1
+ Waveform
+ The shape of the modulator (sine, triangle, square, sawtooth).
+ Default value: Sine
+ Smoothing
+ Low-pass filter over the waveform to smooth hard edges (in percentage).
* Default value: 0
+ PWM (Pulse Width Modulation)
+ The width of the pulse wave, only applies to the Square waveform (in
percentage).
* Default value: 50
+ Attack
+ The time it takes for the oscillator to reach full amplitude (in seconds).
* Default value: 0

106

Making Magic

+ Initial Phase
+ The initial phase of the oscillator waveform (in degrees).
+ Default value: 0

* Scope
» Controls how LFOs are created:

* Voice: An instance of an LFO is created for every voice of the synth when
used in MIDI context.

+ Note/ Event: An instance of an LFO is created for every playing instance of
the synth when used in MIDI context.

+ Game Object: An instance of LFO is created for each game object instance in
relation to the game engine.

* Global: A single LFO is created for the whole project and used globally by all
instances.

» Default value: Voice

Designer Note

Additional information for working with LFOs can be found in the
Wwise Help Document: Wwise Help > Interacting with the Game >
Working with RTPCs > Working with LFOs

Additionally, Frequency Modulation (FM) between the two Oscillators is used to
"soften” the sound and helps it blend better with the sample based components of
the magic_blast_fire_blend.

&8 Wwise Synth One - Source Editor
MName Source Plug-n

Wwise Synth One

Notes

Effect Settings RTPC
Input

Frequency Mode Base Frequency Base Frequency]| 600

Osdillator 1 Osdillator 2 Moise

Waveform |[| Triangle Waveform Square Moise Shape |I| Pink Noise

a
Transpose -1402 Transpose -3600 Moise Level] 22

1
I J
Tl i
I J
i i

Invert Invert

Mode (]| Mix

Wwise Synth One FM (Frequency Modulation) property

107

Making Magic

The "FM Amount" property is further modified by an LFO Modulator.

REN Source Plug-in Notes

Wwise Synth One

Coordinates ¥ Asis
Oscl PWM = Modulator LFO (Custom)
Osc2 PWM Modulator LFO (|]

FM Amount > » Modulator LFO (Custom)

Wwise Synth One FM Amount property RTPC

H Designer Note
LFO objects can be created as Custom or ShareSet. Custom objects are
stored in-place, directly inside the object that has it. ShareSets are stored
in a separate work-unit and can be re-used across objects.

Modulation Envelope

You can control the amplitude envelope of the Wwise Synth One by adding an
Output Level RTPC modified by a Modulator Envelope. The Modulator Envelope
provides properties to modify the Attack, Decay, Sustain, Release (ADSR) in
addition to Attack Curve, Sustain Time. You can also use the Modulator Envelope
to stop playback with the envelope. Many of the properties of the Modulator can be
randomized and modified by RTPC.

108

Making Magic

From the RTPC Tab for the magic_blast_synth_element, use the Selector to add

the Output Level parameter which will be modified by a new Modulator Envelope
ShareSet.

"I Wwise Synth One - Source Editor

Mame Source Plug-in

Wwise Synth One

Effect Settings RTPC

Coordinates Y Axis \ Mode

Output Level =z Game Parameters Custom
MIDI
LFO

Envelope MNew...

Default (Custom)

Adding a Modulator Envelope to the Output Level RTPC

By default, the mode for the newly created Modulator Envelope is set to ShareSet.

=

New Modulator Envelope [Z] €

= # Modulators
= (N Default Work Unit
2= Modulator_Output_Level_Magic

Mame: Modulator_ Output_Level _Magic

Creating a new Modulator Envelope ShareSet
named Modulator_Output_Level _Magic

109

Making Magic

Designer Note

Envelope objects can be created as Custom or ShareSet. Custom objects
are stored in-place, directly inside the object that has it. ShareSets are
stored in a separate work-unit and can be re-used across objects.

a Wwise Synth One - Source Editor
MName Source Plug-n

Wwise Synth One

Coordinates

X:

OscZ PWM >> "\, Modulator LFO (Custom)

Y: >> Bk, Osc2 Transpose 1 [Distance_to_Player

Output Level > M Modulator_Qutput_Level_Magic

Modulator Envelope Mode set to ShareSet

The minimum and maximum RTPC values of Modulator Envelope in the Sound
Property Editor affect the base and top of the ADSR envelope (nil and peak values).
Swapping the min and max values reverses the ADSR.

110

Making Magic

Modulator_Output_Level_Magic - Modulator Editor Ed
Mame Shared by:

Madulator_ Owtput_Level Magic { Synth One

Modulator Settings RTPC
Envelope
Attack Time Scope Mote/Event

Attack Curve Trigger On Play

Sustain Time |[| = 0305

f
J- B —————
Decay Time]| Auto Release
f
i

- =
= Stop playbadk after release

Editing the Envelope Modulator

The properties available to the Modulator Envelope are:

+ Attack Time
* Defines the time taken for initial run-up of level from nil to peak, beginning
when the key is first pressed (in seconds).
* Default value: 0.2
+ Attack Curve
+ Adjusts the Attack Curve from its linear default slope (50%) to either:
+ an exponential-style envelope (0%) where the rate of change starts slow and
then increases
* alogarithmic envelope (100%) where the rate of change starts fast, then
decreases
+ Default value: 50
* Decay Time
+ Defines the time taken for the subsequent run down from the attack level to the
designated sustain level (in seconds).
* Default value: 0.2
+ Sustain Level
* Defines the level during the main sequence of the sound's duration, until the
key is released (in percentage of the range).
+ Default value: 100
*+ Release Time

111

Making Magic

+ Defines the time taken for the level to decay from the sustain level to zero after
the key is released (in seconds).
+ Default value: 0.5
* Scope
+ Controls how Envelopes are created:

* Voice: An instance of an Envelopes is created for every voice of the synth
when used in MIDI context.

+ Note/ Event: An instance of an Envelopes is created for every playing instance
of the synth when used in MIDI context.
* Default value: Note/Event
+ Trigger On
+ The actions/MIDI events that may trigger the envelope (that is, enter the attack
phase):
+ Play: either a play action or a MIDI note event
* Note-Off: only a MIDI note-off event
+ Default value: Play
* Auto Release
+ Determines if the envelope requires an action/MIDI event to exit the sustain
phase and enter the release phase. If set, the envelope exits the sustain phase
after Sustain Time. If not set, the envelope exits the sustain phase following a
certain condition:

+ The envelope may be released by the game via a Release Envelope event.
*+ An envelope may also enter the release phase via a MIDI note-off event,
provided the envelope was triggered by a MIDI note-on event.

* Default value: False

* Sustain Time

* Defines the time which the envelope will remain in Sustain before the Release is

applied (in seconds).
+ Default value: 0

+ Stop Playback After Release

+ If set, the playback of the associated sound is terminated after the release phase
is complete.

» Default value: false

Modulator Envelope Properties can be accessed using the Modulator Editor:

"‘3 Designer Note
Additional information for working with Envelopes can be found in the
Wwise Help Document: Wwise Help > Interacting with the Game >
Working with RTPCs > Working with Envelopes

112

Making Magic

The combined power of synthesis, modulation, and parameterization is at its best
when used in conjunction with the dynamics of gameplay. With so many options
to modify and affect the properties of sound within the project, it is important

to understand the impact these can have on your platform's memory and CPU
performance.

A modulator's processing time depends on its RTPC usage. For most properties,
a modulator is evaluated once per audio sample. However, for the property voice
volume, the associated modulator is evaluated at every frame. Use modulators
selectively as they can consume a significant amount of a platform's memory and
CPU. Always work within the constraints of your target platform.

113

Making Magic

Magic Summary

The creative sound design process for magic and spell casting effects begins deep
within your own imagination. From there it extends from sound, to the microphone,
eventually ending up in the sound library where it can be assembled in a digital
audio workstation as the basis for the creation of fantastical effects. A further step

in this process is how the content is prepared for the eventual implementation.
Creatively combining, recombining, and dynamically manipulating sounds within
the authoring application using game parameters is a working methodology that
leverages the inherent interactivity of games as a medium. Coupled with the power
of synthesis, LFO, and Envelopes, the potential for the dynamic interaction between
gameplay and game sound can make a sound designer's dreams come true.

Throughout this chapter we have:

+ Learned about summing and layering with the blend container.
+ Changed perspectives based on distance using RTPC.

+ Discussed the application and modification of effects.

+ Created a Wwise Synth One element.

Stepped through the process of:

+ Recombining sounds using the blend container.

+ Using effects.

+ Employing Real Time Parameter Control (RTPC).

+ Leveraging blend tracks as part of a distance based perspective model.
+ Creating a Modulator Envelope ShareSet.

Also touched on:

+ Effects chain ordering.
+ Audio bus sub-mixing of effects.
* Modulator LFOs.

Throughout this section we have created the following objects:
+ A blend container called magic_blast_fire_distance_blend that uses a distance
game parameter to Crossfade between different perspectives of magic blast sounds.

+ A Wwise Synth One element that augments the audio content in
magic_blast_fire_blend.

114

Making Magic

Magic Additional Resources

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Defining Object
Playback Behaviors > Defining the Contents and Behavior of the Blend Container

Wwise Help > Wwise Reference > Actor-Mixer Objects > Blend Containers
Video Tutorial - Creating Dynamic Sounds Using RTPCs

Wwise Help > Interacting with the Game > Working with RTPCs > Working with
LFOs

Wwise Help > Interacting with the Game > Working with RTPCs > Working with
Envelopes

Wwise Help > Wwise Source/Effect Plug-ins > Wwise Synth One > Wwise Synth
One Plug-in

115

http://www.youtube.com/watch?v=4tyuOmwF5EU&hd=1

Chapter 5. Dialogue Decisions and Language
Lessons

OVEIVIEW .ottt 117
Getting Started with Dialogue and Non-Verbal Vocalizationscc.cccceevuernennee. 118
Adding Additional Languagesccoceeerveriiriinienienenieneeeete et 122
Dynamic DiIaloUecceoeieiiiiiriiiiiienteieeteeeestete ettt 124
Cinematic Dialogue Placementccccevervierieiieniieniininienteeeeeneesie e 126
VOICE SUMMATY ..eviiiiiiiiiieiiieeeete ettt et e sneesmne e 128
Voice Additional RESOUICEScccuevuervuirieriiiiiinienieeientestete ettt 129

116

Dialogue Decisions and
Language Lessons

Overview

A single shriek of terror resonates through the forest, shaking dead leaves from the
branches of trees and setting birds to flight. What follows is an exchange of inhuman
grunts and growls followed by a plea for help.

From simple conversational interactions, to a fully branching multi-language epic
storytelling device, the art of dialogue production has become an exercise in asset
management and system integration of the highest order. With the escalating line
counts of modern console titles, voice over can quickly become a high quality
headache without a comprehensive localization strategy.

This chapter will take you through the process of:

* Getting started with voice.
* Preparation for Multi-Language support.
+ Dynamic dialogue.

* Positioning and Panning.

117

Dialogue Decisions and
Language Lessons

Getting Started with Dialogue and Non-Verbal
Vocalizations

When working with dialogue you need to distinguish between spoken and non-
verbal dialogue. Spoken dialogue usually needs to be localized in different languages
whereas non-verbal dialogue represents the palette of emotional vocalizations not
usually translated. In the case of non-localized audio files, variations can be added
directly to a sound object, organized within the Actor-Mixer hierarchy, and added
to events just like any other sound effect. To handle these dialogue considerations,
the process for importing Voice assets into the project differs from music and sound
effects. The fundamental difference being the opportunity to determine project
languages in preparation for localization.

First you need to define the game project languages in the Language Manager located
in Wwise>Project>Languages menu. You also need to define the reference language
used throughout the project.

The reference language for the project is used in various situations:

+ Importing language files - when you are importing an audio file, the import
conversion settings of the reference file are used.

+ Converting language files - when you are converting a language file, the
conversion settings of the reference language can be selected.

+ Before language files are available - when certain language sources are not ready,
the reference language can be used in their place.

118

Dialogue Decisions and
Language Lessons

Bulgarian French (France)
Chinese (HK)
= (PRC)

German
Italian
Spanish (US)

English (Australia)
English (India)
English (UK)
Finnish

French (Canada)
Greek

Hebrew

Hungarian
Indonesian
Japanese

Korean

Latin

MNorwegian

Paolish

Portuguese (Brazil)
Portuguese (Portugal)

Reference language: Endlish (US)

Use reference language as stand-in

Defining project languages in the Language Manager

After you have selected the languages, localized voice files can be imported either
through the Project menu, or by simply dragging and dropping files into the Project
window. Selecting Import as Sound Voice prepares the object for localization based
on project languages established in the Language Manager.

119

Dialogue Decisions and
Language Lessons

Audio File Importer

Import Mode: Create new objects

Add Files... Add Folders...

Audio FileFolder Template Cbject TypefAction

Template match mode: Match all Import Cancel

Importing dialogue as a Sound Voice in the Audio File Importer

After a Sound Voice has been imported in the reference language, additional
localized files can be added.

45 vo_hero_hello - Contents Editor - 1 child
Mame Audio File Val, Offset Duration Motes
PF English (US) Add Source ==
yilv we_hero_hella
PF French (France) Add Source >

PF Genman Add Source ==

PE Iiafizn Add Source ==
PF Soanih (L Add Source ==

Adding an audio source for English language

A copy of the source audio files are then added to the project based on language.
By default these files are copied to the Originals/Voice location within the project
directory.

FX

120

Dialogue Decisions and
Language Lessons

| .. v Computer » Project » Originals » Voices »

Mame

. English(Us)
. French{France)
. German

. Ttalian
. Spanish{Us]

The folder hierarchy for copied Originals in the project Voices file folder

121

Dialogue Decisions and
Language Lessons

Adding Additional Languages

When localized language files are ready, they can be imported directly into the
project using the Audio File Importer.

To begin the process, first change the import mode to Localize Languages and set the
appropriate Destination language for localization.

Audio File Importer (4]

A

Import Mode: | Localize languages Destination language: French (France)

Audio file destination

Add Files... Add Folders...

Audio File Folder Template | Object Ty N Object File Size | Date Modified

Import Cancel

Preparing to import localized voice files using the audio file importer

You can then select files or folders to be imported in the Destination language using
either the Add Files or Add Folders button.

ion language: French (France)

urce\wocal_French'vo_grue_i_will_end_you.wav
D:\Source\vocal_French'vo_grue_til_death.wav
D:\Source\vocal_Frenchlve_grue_you_are_mine.wayv MNone & ... 149.9kB
D:\Source\wocal_Frenchvo_hero_goodbye.wav I o 52.5KB
urce\wocal_French\vo_hero_goodbye_later.wav

D:\Sourcevocal_Frenchlve_hero_hello.wav

‘Source\wocal_Frenchlvo_hero_hello_whatsup.wav I o 43, 1KB 2/2/2012 7:12FM

Adding localized files to already existing voice objects

Once imported, the localized files appear in the Contents Editor for the associated
Sound Voice object.

122

Dialogue Decisions and
Language Lessons

=".E vo_hero_hello - Contents Editor - 2 children
Mame Audio File Vol Offset Duration Motes
PF English (US) Add Source ==

wllh wa_hero_hello | - |

PF French (France) Add Source ==
wll wo_hero_hello B
FF German Add Source ==
PF Tfadan Add Source
PF Soansh (1K) Add Source =

Localized dialogue added to an existing Sound Voice

123

Dialogue Decisions and
Language Lessons

Dynamic Dialogue

There comes a point in every quest when the path splits, and a decision must be
made about how to proceed. The art of branching dialogue relies on the player
choosing from a list of possible interactions in order to move the conversation
forward. In addition to the potential outcome, you may want to carry forward the
history of past responses to characters during previous conversations.

At the center of Wwise’s Dynamic dialogue system is the dialogue event, which is

a set of rules or conditions that determines which piece of dialogue to play. The
dialogue event allows you to re-create a variety of different scenarios, conditions, or
outcomes that exist in your game. To ensure that you cover every situation, Wwise
also allows you to create default or fallback conditions.

All these conditions are defined using a series of arguments and argument values.
These arguments and argument values are combined to create argument paths,
which define the particular conditions or outcomes in the game. Each path is then
associated with a specific sound object in Wwise. As the game is played and dialogue
events are called, the game verifies the existing conditions against the paths defined
in the dialogue event. The argument paths that match the current situation in game
along with the mode, probability, and weighting of each path determine which piece
of dialogue is played, if any.

For example, the following dialogue event contains the arguments related to the
names of each player in a sports game. The values of each argument are combined to
create the different paths or conditions that may exist. In this particular example, the
commentator can use either the player's last name or full name.

B Dialogue Event: Name

ﬁé] Arguments Player Mame HMame Length
E Argument Tony Cross Full
¥al
aes Jahn Patrick Last
Argument Paths Assigned Object

Cross - Full Cros=_Full

Cross - Last Cross_Last

Patrick - Full Pat_Full
Patrick - Last Pat_Last
Plaver Mame - Hame Length He

124

Dialogue Decisions and
Language Lessons

To deal with situations where there are no argument values that match the current
situation in game, you can create a path with a default or fallback argument value.
These fallback paths contain one or more arguments instead of argument values and
are usually associated with a more general sound object. In the previous example, the
fallback argument path is associated with the sound object “he” instead of one of the
player’s names.

After you have re-created all the conditions in the dialogue event, it can be integrated
into the game engine. When the dialogue events are called by the game, the sound
engine resolves the dialogue event by returning the audio object that corresponds to
the matching argument path. The sound engine can then decide whether to insert
the audio object into a dynamic sequence for playback. The relationship between
returning an audio object and inserting it into a dynamic sequence does not have to
be 1:1. This means that for each resolved dialogue event, a returned audio object can
be added to the dynamic sequence as many times, as necessary.

Since the game engine uses the dialogue event name, you can create the events,
integrate them into the game and then build and fine-tune the contents of each
event without ever having to re-integrate them into the game again. This gives you
a great deal of flexibility to add or remove argument values, and to experiment with
different sounds, all without additional programming.

For more information on dynamic dialogue:
Wwise Help > Interacting with the Game > Working with Arguments > Overview

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue >
Understanding the Dynamic Dialogue System

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue >
Dialogue Events Tips and Best Practices

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue > Creating
Dialogue Events

125

Dialogue Decisions and
Language Lessons

Cinematic Dialogue Placement

Several examples are helpful to have a clear picture of how dialogue should be
handled positionally in games. Linear media, such as film and television, can help
guide the way we present dialogue for the screen, but doesn’t accommodate the
entire scope of concerns when it comes to handling interactions that are presented
dynamically.

With cinematic conversations usually anchored in the front speakers during sections
of the game where control is taken from the player, setting the position of dialogue
during these sequences to 2D will appropriately manage their placement. By default,
2D objects are only played through the front left/right speakers for sound objects
without any propagation behaviors. Adding a percentage of the center channel allows
for an additional level of control.

r vo_grue_til_death - Sound Property Editor

Conversion Settings Effects Positioning

Owverride parent

Cinematic dialogue set to 2D with 80% center channel volume

In situations where the player is present during the delivery of gameplay dialogue
and able to move throughout the world, it may be necessary to play the dialogue
positionally in 3D. Simply subscribing an attenuation to a Sound Voice with the
game object at the location of the character speaking the line will apply the specified
volume reduction based on the defined attenuation. This case allows for situations
where you are free to move about while dialogue is spoken by characters positioned
in the game world.

Adding realism to positioned in-game dialogue doesn’t have to end with volume
attenuation. As described in the campfire example in the Ambient chapter, most
voices could benefit from the addition of a spread across adjacent speakers at close
distance. Taking the implementation a step further, the addition of cone attenuation
could be used to focus the direction of the sound controlled by the orientation of the

126

Dialogue Decisions and
Language Lessons

game object, or in this case the mouth of the character speaking. Applying a cone
attenuation allows for the attenuation and filtering of the sound as the listener moves
outside of, or behind, the oriented game object. This simulates the obstruction of the
character’s head on the spoken line of dialogue.

Programmer Note

The OrientationFront vector defines the direction that the listener's head
is facing. It should be orthogonal to the OrientationTop vector, which
defines the incline of the listener's head. For a human listener, one could
think of the OrientationFront vector as the listener's nose (going away
from the face), while the OrientationTop vector would be orthogonal to
it, going between the listener's eyes and away from the chin.

Introducing additional techniques for simulating realism with dialogue are worth
investigating, but knowing whether the dialogue being delivered is critical to the
game play can quickly determine how much realism can be used. If, for instance,
it’s important that the player hear the secret to subduing the dragon, then realism
should not get in the way of delivering the dialogue by obstructing it with filters or
volume attenuation. Ideally every conversation in the game needs to be built along
the fine line between realism and storytelling to deliver, coupled with game play, an
immersive conversational experience to the player.

127

Dialogue Decisions and
Language Lessons

Voice Summary

As games continue to grow into their role as a storytelling medium, there are few
devices available greater than the human voice in its ability to convey emotion and
establish character. Whether you're dealing with non-verbal communications or
building complex trees of conversational outcomes, there exists a suite of tools
designed for the express purpose of integrating dialogue within the flow of gameplay
in Wwise.

Throughout this chapter we have:

+ Discussed getting started with voice.

+ Differentiated between verbal and non-verbal vocalizations.

+ Established a methodology for localizing dialogue.

+ Discussed the role of dialogue positioning in different scenarios.

Stepped through the process of:

+ Importing sound voice objects for English language dialogue files.
+ Importing localized language dialogue files using the Audio File Importer.
+ Adjusting the percentage of center channel contribution for 2D positioned sounds.

We've also touched on:

+ Using arguments to creating branching dialogue.

Throughout this section we have created the following objects:

+ Spoken dialogue sound voices in the English language and localized in French.

128

Dialogue Decisions and
Language Lessons

Voice Additional Resources

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue

Wwise Knowledge Base - Does Wwise provide support for integrating a lip-sync
solution?

Wwise Knowledge Base - Importing a large number of files in Wwise

Video Tutorial - Managing Voices and Language Localizations

129

http://kb.gowwise.com/questions/122/Does+Wwise+provide+support+for+integrating+a+lip-sync+solution%3F
http://kb.gowwise.com/questions/122/Does+Wwise+provide+support+for+integrating+a+lip-sync+solution%3F
http://kb.gowwise.com/questions/133/Importing+large+number+of+files+in+Wwise
http://www.youtube.com/watch?v=Sq-Rg5QkQTY&hd=1

Chapter 6. Unlocking the User Interface

OVEIVIEW oottt 131
Creating a Simple Menu Select Soundccccocveviiiiiiieniinniineeneeeee 132
Defining 2D Sound POSItIONINGcccevuereerierierienienienenenreseere et 134
The Complex Negotiation Of Pauseccccevuevievieriieninieniienieieeieneceneceeeeeee 135
Pause - Defining the Scenarioccccecevveiveriienienennieniiieneneeeneeseeeeee 135
Pausing the Gamecoccecueiiiiiiiinieineeteeeteeetere et 136
Resuming the Gamecoceeveriieriiniiiiiniceeeceeeeece e 137
User Interface SUMMATYcccceveriieriiriiiiienieienienteteeteetesie et 139
User Interface Additional ReSOUICEScceevuerieriiiiiniieniiienicteiceececeeeeeee 140

130

Unlocking the User Interface

Overview

The User Interface is often the hub around which the game world is created. Creating
a solid experience with sound begins with the ability to understand the interface flow
and how sound can be used to reinforce the aesthetic, without breaking immersion.

This chapter will take you through the process of:

+ Creating simple menu events.
+ 2D positioning and panning.

+ Creating complex events.

From the simple playback of exactly the right sounds, to the complex negotiation
that happens when pressing pause, the User Interface is a case study in the solutions
and techniques available within the Wwise authoring application.

131

Unlocking the User Interface

Creating a Simple Menu Select Sound

Let's create a Sound SFX for a menu_select sound which will be played whenever
a menu selection is confirmed. Start first by importing the menu_select file, either

using the audio file importer or by dragging and dropping from the source folder
into the default work unit.

¢ menu_select - Contents Editor - 1 child

ame Audio Fils Yol E
U] i
r B Interactive Music Hierarchy

1| STHERESSEISEE
menu_select sound object

Creating a Simple Menu Select Event

By selecting the Sound SFX and entering the contextual menu we can immediately
create a play event for this sound:

N menu_sek 3 ditor - 1 child

Duration
MNew Child

@ Interactive Musi New Parent

MNew Event

Delete

Rename

Creating a play event from the contextual menu of a sound object

This results in the following event:

Projec ore E Play_menu_select - Event Editor

Audio 'Events SoundBanks Game Syncs ShareSets SENEN MNotes:
Mame:

Play_menu_select
Events

B

Default Work Unit Event Actions

[+

Remove

[+

PF

[B+ +|

Dynamic Dialogue
M Default Work Unit

o
| B

Location in Hierarchy

Action Properties

Delay Play Probability

Fade in time
100

Curve

Play_menu_select event

132

Unlocking the User Interface

The event name Play_menu_select can now be passed to the programmer who will
post the event for each time an item in the menu is selected.

2 Programmer Note
Events are triggered by calling AK::SoundEngine::PostEvent()

133

Unlocking the User Interface

Defining 2D Sound Positioning

With most visual aspects of the menu displayed on a two-dimensional plane, it's
common to also ignore 3D positioning for a sound object and instead manually
control the positioning in 2D. Wwise enables direct control over 2D positioning of a
sound object from the positioning tab in the Project Explorer.

- Sound Praperty Editor

= 8 Master-Mixer Hierarchy

2D Position editor

By switching the positioning to 2D you gain control over the sound's position
through the use of the 2D panner interface and also via a percentage parameter for
the center channel that sends a contribution of the sound to the center speaker.

Programmer Note

Usually, UI events are triggered from a global game object (a game object
without positioning info)

Of primary concern when scoring for the user experience is the feel and aesthetic of
the sound itself. While there is always room to use advanced techniques to achieve
certain effects, the role of sounds that help to provide feedback to the user are usually
much more difficult to design than they are to implement.

134

Unlocking the User Interface

The Complex Negotiation of Pause

While the playback of discrete sounds may end up being quite simple, there is often
a complex series of interactions that need to take place during the transition from
gameplay to the menu. It is expected that at any point during gameplay that the
pause button can be pressed, allowing for the swift transition from in-game to in-
menu actions.

For this to appear seamless from the sound perspective, several things should
happen:

+ Music playing in-game should be muted, paused, or allowed to play through the
menu.
+ In-Game sound effects should be paused, stopped, or muted.

+ In-Game ambient sound should be muted, paused, or allowed to play through the
menu.

+ Non-critical dialogue should be paused or stopped.
+ Ciritical dialogue should be either paused or restarted.

* Menu music or ambient sound could be played.

At first glance, this list of actions may seem outside the scope of what would
normally be available to the sound designer; however, the event system allows

for these decisions to be controlled and manipulated from within the authoring
application. Wwise events can apply actions to the different structures within your
project hierarchy. Each event can contain one action or a series of actions. The
actions you select will specify whether the Wwise objects will play, pause, stop, and
SO on.

A complete list of event actions can be found in the help documentation:
Wwise Help > Wwise Reference > Events > Event Editor

Wwise Help > Where to Begin? > Wwise Fundamentals > Understanding Events >
Action Events

Wwise Help > Interacting with the Game > Managing Events > Overview > Types of
Event Actions

Pause - Defining the Scenario

Let's take a scenario where we specifically want to:
+ Pause all music, ambient, sound, and voice.
+ Play a transitional sound effect.

+ Loop a piece of menu specific music.

135

Unlocking the User Interface

Designer Note

In the case of multi-player or persistent worlds that carry on while one
user is paused, there is also the ability to mute the audio.

Ideally, from a simplified perspective and likely that of the programmer, only two
events need to be communicated: Pause Audio and Resume Audio. The sound
behavior that happens when each of these is posted by the programmer can be
specifically determined by the sound designer. To make things easy in the example,
we are going to pause based on busses contained in the Master-Mixer Hierarchy.

Pausing the Game

The following event shows each level of the mix hierarchy using the pause action
with each object receiving a 1.5 second fade out:

E Play_menu_pause - Event Editor [Z] /€
Motes:
MNarne:
Play_menu_pause
Event Actions
Browse... Remove
MNa. Actions Objects Scope
1 == 5 Music_System Global
2 == World_Sound Global
Voice_Mon_World Global
Menu_Music Game object

Menu_Transition Game object

Location in Hierarchy

Action Properties

Delay Pause

Fade out time : Indude delayed Resume actions

Curve

Pause event showing event actions

Event Action Object Location

136

Unlocking the User Interface

Pause Music_System (Interactive Music)
Pause World_Sound (Master Audio Bus)
Pause Voice_Non_World (Master Audio Bus)
Play Menu_Music (Interactive Music)
Play Menu_Transition (Actor-Mixer)

Additionally, the menu_music and menu_transition use the play action

simultaneously.

Resuming the Game

When we resume the game, we only need to use the resume action on the paused
busses of the Master-Mixer hierarchy in order to continue playing everything back
from the point at which they were paused. Simultaneously we will use the stop action
on menu_music with a 1.5 second fade out, and play the menu_transition sound

again:

iLE Play_menu_resume - Event Editor

Mame:

Play_menu_resume

Event Actions

PF | Actions

Resume

Location in Hierarchy

Action Properties

Delay

Motes:

Browse... Remove
Objects

Music_System
World_Sound
Voice_Mon_World
Menu_Music

Menu_Transition

Resume

Fade in time

Curve

2/X

Scope

Global
Global
Global

Game object
Game object

Master resume

Resume event showing event actions

137

Unlocking the User Interface

Event Action Object Location

Resume Music_System (Interactive Music)
Resume World_Sound (Master Audio Bus)
Resume Voice_Non_World (Master Audio Bus)
Stop Menu_Music (Interactive Music)
Play Menu_Transition (Actor-Mixer)

The important take away from this example is that with just two Wwise events you
can control all of the sound for the game. Using event actions, the audio experience
for transitioning from gameplay to pause and back again can be authored according
to the desires of the sound designer.

138

Unlocking the User Interface

User Interface Summary

Implementing the sound in your user interface can be as simple or complex as
necessary in order to support the feel and aesthetic. Simply put, the sound should
serve as an extension of the experience; whether navigating through or transitioning
between gameplay and the menu system, everything should support the artistic
scope. Wwise puts the decisions into the hands of the sound designer by allowing for
the finer details of interaction to be managed through the event system.

Throughout this chapter we have:

+ Reviewed importing sound files.
+ Discussed the role of User Interface sounds to support game aesthetic.
* Outlined some of the complexities inherent with pausing and resuming.

Stepped through the process of:

+ Creating a simple Event for menu selection.
* Defining 2D sounds using the Position Editor.
+ Creating pause and resume Events.

Also touched on:

+ Different types of Event actions.

Throughout this section we have created the following objects:

+ A simple menu select Sound SFX and event.

+ Pause and resume events.

139

Unlocking the User Interface

User Interface Additional Resources

Wwise Help > Interacting with the Game > Managing Events > Overview > Types of
Event Actions

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Defining
Positioning for Sound and Motion

Video Tutorial - Creating Events

140

http://www.youtube.com/watch?v=JCKhspCw-K4&hd=1

Chapter 7. Adventures in Music

OVEIVIEW oottt 142
Starting With the Interactive Music Hierarchycccccoceeveriivinnennencnncnecnennee. 143
Preparing the Contentcccccoceeieverienienenienteeneeeeeeeee et 143
The Horizontal APproachc..coceoiiiiiiiiiiniiieeeteeeeeeese e 144
Creating the Ambient Music SEZMEeNtcccceevuereeneriienirneniieneenrenieneens 144
Grooming the Trackscc.ecververiiriiiiniiteereeeee et 147
Dynamic Dangercccccevveriiiiieniiiiienieneeceecie et 149
Adding RTPC t0 Tracks ...cceecuevienierieniiienieneeieneeseeeeteet et 149
Auditioning RTPCccooiiiiiiiiiiiiieeteeeeeee et 151
Looping @ MUSIC SEZMENT ..cccueeruiiiiiriieiiieniiniie et 152
SeCtION SUMIMATY eeviiiiiiieiiieiie ittt ettt st 152
The Vertical APProachcocceeeeviiiieniiiirieetereeteee et 153
Groups and Behaviorsceceveeverieniiiinieecerceeeecee e 153
Sequencing Groups in the Music Playlist EQitorccoceeveriiiniininicnennnene. 154
SECtION SUMIMATY eeviiiiiiieiiieiie ittt ettt e 156
Using States to Switch Between Music TYPescovevereerieneniieniinienicneeeeieneene 157
Defining Interactive Music Transitionscceceeceeeereerrerneererneneeneesieneensesseennees 159
AUuthoring Transitionscecceeeererrieriererientereste ettt sre e 160
Defining Transition Behaviorcccceevieevieneiiinienieienienecieneeseeeeeeenee 160
Transitioning from Ambient to Action MUSIC ..c..cccevevveverenenireneneeieenneeenes 161
Transitioning from Action to Ambient MUSICccoevvererenenerieseeieneenienns 163
SeCtION SUMIMATY eeveiiiiiiiiiieiie ittt sne e 165
MUSIC SUIMIMATY ..eiiiiiiiiiiiiiiieeeeeeee ettt e 166
Music Additional RESOUICESccceeiiiiiiiniiniiniiniiiicicicrceeeee e 168

141

Adventures in Music

Overview

Heroic journeys are usually accompanied by the thundering of trumpets and fanfare,
but several hours of steadily looping brass wouldn't scale across a single piece of
music. Interactive and dynamic music in games continues to evolve as an art form

in its own right. Complex techniques such as authoring sync points, defining time
signatures, and preserving the musical entry and exit points can now be specified
from within the authoring application to create a complex fabric of composition
created specifically for the medium of games. With such potential comes the ability
to tailor the music to support gameplay and the player experience.

The first consideration when choosing an implementation strategy for a music
system begins with matching the emotional scope and intent of the game

with appropriate music. By nature, systems are adaptable and varied, but the

basic thematic intent should create a seamless blend between the game and its
implementation. Once the mood has been established, it's time to begin thinking
about how to support gameplay and then how to shape compositional elements into
building blocks that will become the emotional river running throughout the game.

This chapter will take you through the process of:

+ Starting with the Interactive Music Hierarchy.
* Preparing the Content.

+ The Horizontal Approach.

* The Vertical Approach.

+ Switching Between Music Types.

* Defining Interactive Music Transitions.

142

Adventures in Music

Starting With the Interactive Music Hierarchy
What is the Music Engine?

The music engine is the high-level engine that handles complex, high-level
scheduling of music segments of the interactive music hierarchy. The fundamental
difference between the Interactive Music and the Actor-Mixer hierarchies is the use
of tempo and time signature to rule the behaviors of the different music containers.

Audio files added to the Interactive Music hierarchy are imported as Music Segments
and can also be added as tracks within a music segment. Segments can then be added
to Music Playlists Container or Music Switch Container in order to add additional
functionality.

To view the music specific functionality of containers in the Interactive Music
hierarchy, the Layout must be changed to Interactive Music.

Audin Windows Help

Designer F5
Profiler Fé
SoundBank F7
Mixer F&
Schematic F3
v Interactive Music F10
Dynamic Dialogue F11
Game COhbject Profiler F12
¥ | Warn When Modifying Docked Layout
Feset Factory Layouts...

Changing to the Interactive Music layout

Preparing the Content

Before beginning the integration of music content into the project, the content
must first be prepared for the type of system that’s going to be used. Throughout
this section we’ll walk through two ways of presenting dynamic music that will

end up working together to provide an emotional backdrop to the hero’s quest. By
leveraging both a Horizontal approach (where the volume of time-synced music
layers reacts to gameplay) and a Vertical approach (which adds diversity to a looping
section of music through randomization) we’ll create a simple music system that
changes based on player interaction with the game.

143

Adventures in Music

The Horizontal Approach

During a walk through the forest, the music helps to set a serious and foreboding
tone as we quest to adventures unknown and dangers hidden just beyond sight.

In an attempt to keep the music fresh, varied, and dynamic, the introduction of a
horizontal layering approach modified based on the players proximity to danger will
be instituted. This parameter is passed from the game engine based on the player
distance to an enemy or location and is used to increase the musical intensity during
gameplay.

The musical content for the horizontal implementation has been prepared as ten
tracks of layered audio that is intended to play back in sync within a single music
segment.

Creating the Ambient Music Segment

Adding a child Music Segment to the Default work unit in the Interactive Music
hierarchy called Ambient_Horizontal will begin the process of establishing the
ambient music system.

rF‘ru::ujvs_'u::tEn'|:ih::nr»ar 17|
Audio Events SoundBanks Game Syncs ShareSets [[ENEN
H
= @ Master-Mixer Hierarchy
= @ Actor-Mixer Hierarchy

= @ Interactive Music Hierarchy
= N Default Work Unit
Bl Ambient_Layered

Creating the Ambient Horizontal segment for the horizontal music system

The music files can now be imported as tracks in the segment by either using the
Audio File Importer for the segment or dragging and dropping it over the Music
Segment.

144

Adventures in Music

" Audio File Importer 21X

Import Mode: Create new objects

Audio file destination

Object destination =

Add Files... Add Folders...

ull L. YMusic_Layer_Ambient_Al Music Track Music_Layer_Ambient_aAlpenhorn
ulli .. \Music_Layer_Ambient B: *> Music Track
allv .. \Music_Layer_Ambient_B: Music Track
ulli . \Music_Layer_Ambient_Ci > Music Track
ally L. \Music_Layer_Ambient € = Music Track
all L. \Music_Layer_Ambient_Fr >> Music Track
Al .. \Music_Layer_Ambient_M Music Track

Music_Layer_Ambient_Bass
Music_Layer_Ambient_BassDrum
Music_Layer_ambient_Cello
Music_Layer_Ambient_Cymbals
Music_Layer_Ambient_FrenchHorns
Music_Layer_Ambient_MaleChoir

|l L. \Music_Layer_Ambient_Ti Music Track Music_Layer_Ambient_Timpani

il ... \Music_Layer_Ambient_Tr Music Track Music_Layer_Ambient_Trombones

| L. \Music_Layer_Ambient Tt ws BTk

Music_Layer_Ambient_TubularBells

Template match mode: Match all Import Cancel

Importing Music Tracks to a segment using the Audio File Importer

Once files have been added as tracks to the segment, you can access them through
the Music Segment Editor, where tracks can be arranged and edited within the Music
Segment.

Ambient Lavered - Music Seament Editor - 10 children

Snapto: [BarsfBeats] Cues [Clpsfoops Envelopes: | Lowpass Vhume

Editing tracks in the Music Segment Editor

145

Adventures in Music

The basic component of a track is called a clip, a rectangular area representing a
single .wav file. You can adjust when a clip plays by dragging it left or right along its
track. You can move clips from one track to another by dragging them up or down.
You can also overlap clips on a single track. You can make a clip shorter by dragging
one of its handles inwards, or extend it by dragging the handle outwards. When
you extend a clip, it repeats itself. Each repeat is called a loop. Loop points can be
identified by a vertical dashed line in the clip.

Loop points represented by a vertical dashed line in the clip

Cues and cursors are also part of the Music Segment Editor. Cues are markers
appended to segments to indicate key points, such as its entry and exit points.

Play Cursor
|

|
PRE- POST-

EMTRY EXIT

Adjusting Entry and Exit cues in the Music Segment Editor

You can also create custom cues to indicate when property changes or transitions
should occur, or when stingers should be played. The play cursor moves along as you
play a segment, but you can also move it to control where playback begins. The end
cursor marks the end of the segment.

146

Adventures in Music

The time settings for a segment, which is inherited by any tracks held within a
segment, can be specified under the general settings tab. Segments can inherit the
time settings of their parent containers, as well as override them for further timing
control.

Time Settings

Tempa Time Signature
120 4 f 4

Grid
Frequency

4 Bars

Settings for Tempo, Time Signature, or Grid based measurement

The tempo for this multi-layered music is 120 BPM with a 4/4 time signature. Once
the time settings have been defined for a segment and its tracks, the ability to use
the Snap to functionality in the Music Segment Editor gives a more precise level of
control when adjusting clips, cursors, or cue markers.

[B8] Ambient_Layered - Music Segment Editor

Snap to: |Bars/Beats Cles Clips Loops

Setting the Snap to functionality in the Music Segment Editor

Grooming the Tracks

We can now add and adjust any cues or clip handles in order to prepare this ambient
segment for use throughout the rest of the music system.

First, there are several percussion tracks (timpani, bass drum, and tubular bells)
which can be extended (looped) to match the duration of the cymbals track. This can
be accomplished by clicking and dragging on the blue clip handle at the bottom right
of each track and matching the approximate length of the target track duration.

Voice Volume |]

Using the clip handle to loop and extend the duration of a track

147

Adventures in Music

Next, adjust the entry cue to the first beat of the timpani by holding the Ctrl key
and moving the cursor without moving the segment. This defines the entry cue

of the segment and will ensure that any music transitioning to the ambient music
segment will start on beat. The area to the left of the entry cue is the pre-entry area
of a segment. The pre-entry area may or may not be played in game, depending on
transition settings.

—_
[E5) Ambient_Vertical - Music Segment Editor - 10 children

Entry cue moved to the first beat of the timpani

Next, adjust the exit cue by dragging the exit cue cursor to the last beat of the
timpani. This defines the exit cue of the segment. The area to the right of the exit cue
is the post-exit area of a segment. The post-exit area may or may not be played in
game, depending on transition settings.

]|

Positioning the exit cue

148

Adventures in Music

Dynamic Danger

Now that entry and exit points have been established and a final duration for the
ambient music has been set, it's time to set up volume based dynamics driven by
potential danger. While the implementation of danger on the game side might
include a value attached to each deadly forest creature which would then be passed
to the audio engine, this feature can be auditioned directly within the authoring
application.

The process begins with the creation of a game parameter called Danger in the game
syncs tab of the Project Explorer.

Project Explorer |I| EI _I" Danger - Game Parameker Property Editor

Audio Events SoundBanks m 'E-har'e':'-et::m Marme
Danger
Switches
States Range

Game Parameters
i]

Max 100

Default 100
Triggers

Arguments

Creating a Danger parameter to be used by the ambient music system

The Danger parameter will be used in conjunction with a volume RTPC for several
tracks in the ambient system. Additional track properties are also configurable using
RTPC such as: States, Effects, and Positioning as well as setting different busses,
priorities, and limiting.

Adding RTPC to Tracks

The intention in the multi-layered ambient system is to drive intensity by using
volume in conjunction with several key tracks within the segment, specifically: Bass
Drum, Cymbals, French Horn, Male Choir, and Trombones.

Double clicking the RTPC icon for the Bass Drum track opens up the RTPC tab for
the track, where volume can then be added and associated with the Danger game
parameter.

149

Adventures in Music

Snap to: |Bars/Beats Cues ClipsfLoops Envelopes: | Lowpass Highpass

Accessing the property editor via the RTPC icon

@ Music_Layer_Ambient_BassDrum - Music Track Property Editor
Mame

L Layer_Ambient_BassDnum

General Settings Conversion Settings Effects Positioning RTPC States Motion Advanced Settings

Game Parameter...

Find Game Parameter

Adding volume adjustment in conjunction with the
Danger game parameter for the Bass Drum track

150

Adventures in Music

These same changes can be applied to additional tracks so that as the Danger
parameter increases, additional instruments fade up and reveal layers of musical
intensity.

[BS) Ambient_Layered - Music Segment Editor - 10 children

[Music_Layer_Ambient_Bass...

Completed ambient music system showing tracks with RTPC enabled

Auditioning RTPC

Auditioning changes can be done either using the game parameter cursor in the
RTPC view or through the RTPC tab in the Transport Control.

Cranger [100,000)

Auditioning RTPC with the game parameter cursor

151

Adventures in Music

= Ambient_Layered - Transport Control Volume

Criginal

Switches RTPCs

Volume

——

Auditioning RTPC from the Transport Control

Looping a Music Segment

Looping a Music Segment within the Interactive-Music hierarchy can be done by
parenting the segment in a playlist container and managing its looping properties
within its group. Once it’s been added, the properties for looping can be found in
the default group loop count. Clicking the down arrow changes the loop count to
infinite, ensuring that the group will continue to play the segment until it is stopped
by the audio system.

[Ambient_Music_Loop - Music Playlist Editor - 1 child]|

Group/Seagment Random Type | Avoid Repeat | Weight Loop Count Mew Group

Sequence Continuous Infinite:

Setting the loop count to infinite playback

’Q Designer Note
Do not confuse looping segments with looping audio clips inside
segments. An indepth look at the difference between approaches can be
found in the Wwise Knowledge Base: Looping and streaming of audio
clips and interactive music .

Section Summary

Throughout this section we have worked to create a dynamic loop of music that
responds to the level of danger present in the game. Through the use of layering and
real time parameter control, in conjunction with volume adjustment, this looping
section of exploration music now reflects the hero's journey.

152

http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music
http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music

Adventures in Music

The Vertical Approach

With a dynamic horizontal system in place to handle music during the exploratory
section of gameplay, there must also come a time when the battle begins. In the case
of the triumphant hero, the vertical approach will increase intensity level through the
use of an action specific piece of music. In order to introduce a bit of randomness
into the loop, the action music will be broken into two sections with variations, and
a bridging segment within the playlist. We’ll build these within the Music Playlist
Container using groups.

Groups and Behaviors

The first step in the process begins with the creation of a Music Playlist Container
that will represent the looping action music in the system.

= @ Interactive Music Hierarchy
= (M Default Work Unit

=+ Action_Music_Loop
=+ Ambient_Music_Loop

Creating the action music loop playlist

Next, import the wav files that will be used. By default these will be added to the
Music Playlist Container as segments that can be further arranged within the Music
Playlist Editor.

Audio File Importer [2]
Import Mode: Create new objects

Audio file destination

Object destination
Add Files... Add Folders...

Audio r Template
bl Sequence_Action_Tt None
m ence_Action_’ MNone Music Segment
m ence_Action_- None Music Segment
o ence_Action_ Mone Music Segment

m 5 MNone Music Segment usic_Action_ThemeC_02

il .. WMusic_Sequence_Action_Tr == MNone Music Segment usic_Action_ThemeC_03

Template match mode: Match all Import Cancel

Adding the action music wav files to the Music Playlist Container

153

Adventures in Music

Now that action music segments have been added to the project, they need to be
dragged and dropped into the Music Playlist Container. Once added, they can be
assembled into groups for further arranging. The playlist determines which objects
will be played in what order when the playlist container is called by the game engine.

The four types of groups and segments available are:

+ Sequence continuous: Plays all music objects in the group in sequential order each
time the group is played.

+ Sequence step: Plays only one music object in the group each time the group is
played. The next time the group is played, the next music object in the group is
played.

+ Random continuous: Plays all music objects in the group one after the other in
random order each time the group is played.

+ Random step: Plays only one music object in the group selected randomly each
time the group is played.

Additional randomization types, weighting, and repetition variables can be accessed
in the Music Playlist Editor.

E Action_Music_Loop - Music Playlist Editor - & children

Group/Segment Random Type | Avoid Repeat | Weight Loop Count Mew Group

Variables for grouping segments and playback
properties in the Music Playlist Editor

Sequencing Groups in the Music Playlist Editor
The action music files are broken into 3 different themes: A, B, C.

Themes can be arranged together by creating groups in the Music Playlist Container.
In this case, taking the two Action Theme A variations, the only Action Theme B
variation, and the three Action Theme C variations and sequencing them to create a
varied action loop.

Start by creating a new group that will play as a random step and drag in the two
Action Theme A variations.

154

Adventures in Music

Sequence Continuous

. Random Step
;i Music_Sequence_Action_ThemeA_01

Creating a new continuous random group for Action Theme A

Next, use the Action Theme B segment as a bridge between the two randomized
groups created with the Action Theme A and C segments. Action Theme B can be
dragged in and positioned within the parent sequence continuous group using the
red indicator as a guide to its positioning.

[Action_Music_Sequencing - Music Playlist Editor - 6 children 768

MNew Group
Sequence Continuous
— & Random Step

1 Music_Sequence_Action_ThemeA_01
"] Music_Sequence_Action_Theme#A_02

i _je-_-ru'_'.:_.-'l.l:'_;::ll' _T".»_-_'r'tn_-_-E _I:li
Arranging Action Theme B in sequence with the Action Theme A random group

Finally, Action Theme C will play as a random step for one of the three variations
within its own group.

{5 Action_Music_Sequencing - Music Playst Editor - 6 chidren 72X

Sequence Conbinuous
-—5-: Random Step
| | Music_Sequence_Action_ThemeA_01
Music_Seguence_Action_ThemeA 02

Music_Sequence_Action_ThemeB_01

Random Step
5| Music_Sequence_Action_ThemeC_01
Music_Seguence_Action_ThemeC_02

127 Music_Sequence_Action_ThemeC_03

Creating a new random step group for
Action Theme C and arranging it in sequence

155

Adventures in Music

Setting the parent sequence container to loop count infinite will cause the sequence
to repeat itself until a change is called by the audio engine.

[Action_Music_Sequendng - Music Playlist Editor - 6 dhildren =]

Mew Group

equence Continuous

i} Random Step
':E Music_Sequence_Action_ThemeA_01

Music_Sequence_Action_ThemeA_02
== | Music_Sequence_Action_ThemeB_01

—i: Random Step
= | Music_Sequence_Action_ThemeC_01
EE Music_Sequence_Action_ThemeC_02
= | Music_Sequence_Action_ThemeC_03

Setting the playlist container loop count to Infinite

There should now be two playlists containers: one for ambient music and another for
action music.

= @ Interactive Music Hierarchy
Default Work Unit

=+ Action_Music_Loop
== Ambient_Music_Loop

Playlist containers for ambient and action music

Section Summary

Here we have tackled the creation of looping action music that is randomly
assembled using playlists of segments. The added sequencing of different segment
types helps to give definition, progression, and drama to the unfolding music.

156

Adventures in Music

Using States to Switch Between Music Types

Now that different types of music have been established for different scenarios, the
next step is to integrate them so they can react to changes in gameplay. This can
be done by introducing States (or game states) that can be used to switch between
music containers, in addition to affecting other aspects of sound or music.

The process of creating a music switching system begins by defining states that

will be communicated from the game and used to switch between different types
of music, in this case: action and ambient music. States represent changes in the
game that affect the properties of existing sounds, music, or motion on a global
scale. The music switch container operates on the same fundamental principal as
the switch container in the Actor-Mixer hierarchy. The addition of time and tempo
functionality allows for musical transitions when switching between containers.

= @ States
= (M Default Work Unit

| 1_"1 QEITIEplE}'
4 action
' ambient

Creating gameplay states to switch between music types

Parenting the already existing ambient and action music loop playlists in a music
switch container allows for the application of the newly created gameplay state

group.

Ea Music_System - Music Switch Container Property Editor

1or el
Events SoundBarks Game [ENIEH| | nName
Music_System M s PF
© B Master-Mixer Hierarchy
5 B Actor-Mixer Hierarchy
= i@ Interactive Music Hierarchy Voice Output Bus
= ' (M Default Work Unit
=) Msie

General Settings Conversion Settings Effects Positioning RTPC States Transitons Stngers Motion Advanced Settings

ault Switch/State
Low Pass Filter 0

S| —

Creating a music switch container using the
gameplay state with a default state of ambient

Music playlist containers can now be assigned to each of the states in the Music
Switch Container Association Editor either by dragging and dropping them from the
hierarchy or using the Selection button.

157

Adventures in Music

Ea Music_System - Music Switch Container Assodation Editor - 3 children

Switch/State Child

L None
{ action = Action_Music_Loop
{* ambient == Ambient_Music_Loop

Assigning music playlist containers to states in
the music switch container association editor

Now that the simple assignment of music playlist containers to states has been
established, the default transition between music types can be auditioned via states
in the transport control.

L

T+ | Music_System - Transport Control

™
Criginal

PF Only

RTPCs Triggers

ambient

Auditioning music changes based on states

158

Adventures in Music

Defining Interactive Music Transitions

In order to gain more control over the way music segments and music playlist
containers transition, the music switch container provides the ability to author
specific transition behavior.

The Transitions tab is where you define the transitions between music objects within
either music playlist or music switch containers. A transition is a musical behavior
you can define to be used when switching from the music object currently playing

to another. Each transition has a source and a destination. An additional segment,
called a transition segment, can be used as a musical bridge between the source and
destination.

The Transitions tab contains the Transition Matrix, which allows you to create a
set of rules that define how each object transitions to every other object within the
container. You can create explicit rules for each object, or more general rules that
apply to more than one object. The default Any to Any transition rule applies to all
remaining undefined transitions.

The list of transitions is displayed in the Transitions tab in descending order. When
a transition is needed, Wwise begins searching at the bottom of the list until it finds
one that applies to the situation at hand. If no matching transition is found, Wwise
uses the default Any to Any transition.

& Music_System - Music Switch Container Property Editor 2]

MName Notes o
Music_System 3

1Settings Effects Posiioning RTPC States Tramsiions Stingers Advanced Settings

Add Transition Tester...

Lower transitions have higher priority.
So
Exit source at Exit Cue Use transition segment
Play post-exit

Fade-out

Destination

Syncto | Entry Cue Custom Cue Filter
Play pre-entry

Fade-in

The Transitions tab and Transition Matrix

159

Adventures in Music

Avuthoring Transitions

We'll begin by adding explicit transition segments in order to move musically from
the ambient loop, to the action loop, and back again. This can be accomplished by
adding a new transition to the transition matrix and defining its behavior, starting
with the transition from the Ambient Music Loop playlist to the Action Music Loop
playlist.

First add a new transition using the Add button.

Transitions stingers Advanced Settings

Source Destination
Any Any
Any == Any

Adding a new transition to the transition matrix

Next drag and drop the source and destination music objects, in this case the
Ambient Music Loop playlist (Source) and the Action Music Loop playlist
(Destination).

Transitions Stingers Advanced Settings

Source Destination Add
Any Any

* Ambient_Music_Loop == == Action_Music_Loop

Remove

Dragging and Dropping music objects to the transition matrix

Defining Transition Behavior

Transition behavior between the source and destination can now be authored,
specifically: exiting the source, entering the destination, and the specifying of any
transitional segment.

By default, a transition is a simple change from one music object to another. The real
power of transitions appears when you customize the source and destination to make
a unique musical passage. By setting source and destination properties, you can make
a transition between objects sound both smooth and musical.

To give you additional control and flexibility over the transitions between objects,
you can choose from a number of different exit and entry points for the source and
destination respectively.

160

Adventures in Music

There are many potential options associated with exiting the source:

+ Immediate: The source stops playing immediately.

+ Next Grid: The source stops playing at the next grid interval. The grid is an
arbitrary method by which music objects can be virtually partitioned.

+ Next Bar: The source stops playing at the next bar.
+ Next Beat: The source stops playing at the next beat.

+ Next Cue: The source stops playing at the next cue, whether it be a custom cue or
the exit cue.

+ Next Custom Cue: The source stops playing at the next custom cue. If the current
music segment doesn't contain a custom cue, Wwise continues to the next
segment until it finds a custom cue.

+ Exit Cue: The source stops playing at the exit cue.
Transitioning from Ambient to Action Music
Transitioning at the next beat will suit the purpose of moving quickly from ambient

to action music and so specifying Next Beat in the Exit Source window will
accomplish this.

Source

Exit source at Next Beat

Flay post-exit
Fade-out Edit...

Defining the source exit source

By default the source transition is set to play the post-exit of the source during the
transition, however, the post-exit of a source will only play if that source exits at its
exit cue, or fades out at or beyond its exit cue. Otherwise, the post-exit will never
play during a transition.

In this transition we also want to end playing with a fade-out. This can be
accomplished by selecting Fade-out and pressing edit to enter the Music Fade Editor.

161

Adventures in Music

Source Fade-out - Music Fade Editor (7]

COwner:

1
(1L

Adding a source fade-out in the music fade editor

The Music Fade Editor is where you can define the properties of each individual fade
used when transitioning from one music object to another. This includes fade-ins
for destination objects, fade-outs for source objects, and fade-ins and fade-outs for
transition segments. You can define the length and offset of each fade, as well as the
curve shape to further customize the transition.

For the example, it has been determined that a two second fade with a one second
offset using a steep convex curve will allow the ambient music to fade quickly out
and sound natural as it transitions to the action music playlist.

162

Adventures in Music

Source Fade-out - Music Fade Editor

Owner:

Specifying the fade settings for the ambient to action music transition

Auditioning the transitions can be done in the same way as outlined previously.
Transitioning from Action to Ambient Music

Handling the transition from the action music to ambient requires special handling
because of the looping nature of the action playlist, and also in order to capitalize on
the dramatic intent signaled by the end of the action music.

At times, a transition sounds better if another piece of music plays over the end

of the source and the beginning of the destination. This bridging piece of music is
called a transition segment, and you can use one for any transition in Wwise. The
following illustration shows how a transition segment is played between the source
and destination of a music transition.

163

Adventures in Music

Source
Segrnent A

- Transition o
Segrnent

Destination
Segrment

\J

Playback

A - Source Post-Exit

B - Drestination Pre-Entry

2 - Transition Segment Pre-Entry
L - Transition Segrnent Post-Exit

You can also use any combination of the pre-entry and post exit areas of the source,
destination, and transition segments to create even more seamless transitions.

In order to bridge the transition from the Action Music Loop playlist (Source) back
to the Ambient Music Loop playlist (Destination) the addition of the Action Theme
End must be used as a transition segment as part of a new transition in the transition
matrix.

164

Adventures in Music

Ei Music_System - Music Switch Container Property Editor
MName
Music_System M PF

ettings Effects oning

™ Ambient_Music_Loop

% Action_Music_Loop

Source
= urce at NextBar

Flay post-exit

Entry Cue
re-eniry

Fade-in

Custom Cue Filter

el

ngs
Add Transition Tester...

Remove

Lower transitions have higher priority.
Transition Segment
Use transition segment
=
Play transition pre-entry
Fade-in
Flay transition post-exit

Fade-out

Specifying a transition segment between the Action Music Loop
playlist (Source) and the Ambient Music Loop playlist (Destination)

Section Summary

Handling the delicate relationship and transitioning between music playlist
containers and segments is one of the cornerstones of providing a seamless musical
experience to the player. With the introduction of switching based on game state and
the inclusion of a transition segment serving as a bridge between action and ambient
loops, the music is allowed to naturally progress and respond to the game.

165

Adventures in Music

Music Summary

This chapter illustrates a very simple state based music system that operates both
horizontally and vertically, based on intensity, and vertically, based on game state.
The use of tempo based transitions helps keep the music in-sync across state changes,
while the amount of Danger dynamically controls the volume of different ambient
music tracks. The combination of these techniques results in a musical soundtrack
that is customized to the player’s experience.

Throughout this chapter we have:

+ Discussed the role of interactive and dynamic music in games.

+ Discussed the use of different types of implementation strategies.

+ Talked about preparing music content for integration.

+ Compared the Interactive Music hierarchy with the Actor Music hierarchy.

+ Established the use of music segments, music playlist containers, and music switch
containers.

Stepped through the process of:
+ Creating a music implementation based on the Horizontal Approach using RTPC
to control the dynamics of the ambient music:
+ Creating music segments.
* Adjusting track lengths.
+ Looping music tracks.
*+ Adding music segments to music playlist containers.
+ Looping a playlist.
* Creating game parameters.
* Modifying music track volume based on RTPC.

+ Creating a music implementation based on the Vertical Approach using a playlist
to randomly recombine action music segments.

+ Switching between music based on state:
* Defining the transition matrix between source and destination.
* Defining transition behavior.
+ Setting variables for exiting a source.
+ Using the music fade editor.
* Defining a transition segment.

We've also touched on:

+ Working in the Interactive Music Layout.

Throughout this section we have created the following objects:

A music system switch container that switches between ambient and action music
based on game state.

166

Adventures in Music

+ A looping ambient music playlist container which includes an ambient music
segment and ten tracks of music with volume RTPC based on the danger game
parameter.

A game parameter used to simulate danger.

+ A playlist container which includes music segments that are randomized to create
a seamless loop of action music.

+ An action music theme ending used as a transition segment when switching from
the action to ambient state.

167

Adventures in Music

Music Additional Resources
Wwise Knowledge Base - Advanced settings playback limits and interactive music
Wwise Knowledge Base - Looping and streaming of audio clips and interactive music
Wwise Knowledge Base - Understanding the Interactive Music Engine
Wwise Knowledge Base - Interleaved Streaming in Interactive Music
Wwise Knowledge Base - Using States with the Interactive Music Hierarchy
Video Tutorial - Creating Interactive Music Structures
Video Tutorial - Defining Interactive Music Transitions
Video Tutorial - Creating Stingers

Game Sound Design - Making Music Interactive: Elaboration of the Feature Set in
Wwise

Game Sound Design - Dynamic Music Creation Using Wwise

168

http://kb.gowwise.com/questions/204/Advanced+settings+playback+limits+and+interactive+music
http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music
http://kb.gowwise.com/questions/176/Understanding+the+Interactive+Music+Engine
http://kb.gowwise.com/questions/179/Interleaved+Streaming+in+Interactive+Music
http://kb.gowwise.com/questions/177/Using+States+with+the+Interactive+Music+Hierarchy
http://www.youtube.com/watch?v=Zvnt3tbL3OU&hd=1
http://www.youtube.com/watch?v=STAdQwgDYHQ&hd=1
http://www.youtube.com/watch?v=fLrz463kVEI
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/in-depth-creation-of-dynamic-music-in-a-video-game.html

Chapter 8. Adventures in MIDI

OVEIVIEW oottt 170
Importing MIDI FIles ...cc.cooiiiieriiriiienieenietctetetee ettt 171
SeCtION SUMIMATY eeviiiiiiieiiieiie ittt ettt sane e 175
Setting up Wwise Synth Onecocceveriiniiiiniieniieneeeeteseeeeee e 176
Adventures in SYNthesisccocevievieriininienicceeeceeee e 177
SECtION SUMIMATY eeviiiiiiiiiiieiieiieeete ettt e e 180
Connecting MIDI & SOUNA ...ccceevuiriiiriiniiiieiicienieteeee sttt 181
Importing the Individual MIDI Trackscecceevievernieniineniieneeienieneeeene 181
Music Segment MIDI Propertiesccecceeeeuerveerrieriieniienneeneeeieeeeeeseeennees 183
Sound ODbject MIDI Propertiesccceceeeeereererniereeneeseeneeneneeseesreeeenneenne 184
SeCtION SUMIMATY eeviiiiiiieiiieiie ittt ettt st 187
MIDI SUMMATY ..oiiiiiiiiiiiiiiiiiiicrcre e sine s 188
Music Additional RESOUICEScceeciiviiiiiniiriininiiiiicceeeeee e 189

169

Adventures in MIDI

Overview

The hero lies in wait for the winds of change to blow their favorable tidings across
the wind-swept field of battle. He seeks knowledge from the oracle, the all-knowing
eye of history, brimming with stories of the old days - tales of long-forgotten alchemy
and strategies that could help reclaim his position as the rightful heir to the throne.
Equipped with an understanding of these ancient ways, there can be no failure- he
has the tools at hand and the power of the past to create the ultimate good.

A comprehensive pipeline to utilize MIDI (Musical Instrument Digital Interface)

in conjunction with synthesis and sound samples is a powerful combination. The
standardized MIDI format is at the heart of every modern DAW (Digital Audio
Workstation) and serves as an interoperable format that communicates note,
velocity, and other control information for playback. This data can be mapped to
sound samples or synthesizers within Wwise to create efficient workflows for music
or sound design. The power and flexibility of MIDI is well documented as part of a
DAW workflow and the benefit of this format is available within Wwise.

This chapter will take you through the process of:

+ Importing MIDI Files

+ Adding MIDI Files to a Music Track

+ Making Modifications to the MIDI Target

+ Adjusting the MIDI Clip Tempo

+ Understanding Wwise Synth One - Features & Functionality

170

Adventures in MIDI

Importing MIDI Files

Importing MIDI files can be achieved using the same processes outlined in Chapter
1 (Setting the Ambient Stage: Building the Foundation - Importing Audio Files).
MIDI files added to the Interactive Music hierarchy are imported as Music Segments
and can also be added as tracks within any existing music segment. The MIDI file
includes all of the messages that specify notation, pitch, velocity, and other control
information. After the MIDI file has been established in the Wwise Project, it can be
replaced or edited like any audio file.

To view the music specific functionality of containers in the Interactive Music
hierarchy, you need to switch to the Interactive Music layout.

Audin Windows Help

Designer F5
Profiler Fé
SoundBank F7
Mixer F&
Schematic F3
v Interactive Music F10
Dynamic Dialogue F11
Game COhbject Profiler F12
¥ | Warn When Modifying Docked Layout
Feset Factory Layouts...

Switching to the Interactive Music Layout

MIDI Files can be imported in any of the following configurations:

+ One MIDI file containing all tracks, with each track assigned to a unique MIDI
Channel (1-16)

+ One MIDI file for each track, with each track assigned to a unique MIDI Channel
(1-16)

+ One MIDI file for each track, with each track assigned to the same MIDI Channel
(1)

MIDI files can be imported as Music Segments or as tracks within an existing Music
Segment by either using the Audio File Importer or by dragging and dropping them
into the Interactive Music Hierarchy. After files have been added as tracks to the
segment, they can be accessed through the Music Segment Editor like any other
music track.

171

Adventures in MIDI

Audio File Importer X

File Siz ified

IDI_Project_Adventure 12.0KB. 4/21/20149:04 AM

Template match mode; Match all

The Audio File Importer showing a single
MIDI file to be imported as a Music Segment

Alternately, you can drag and drop MIDI files from folders directly into the Wwise
Interactive Music Hierarchy.

= = MIDI_Project_Adventure
=

|| MIDI_Project_Adventure

Imported MIDI_Project_Adventure .mid file

After MIDI files have been added as tracks to the segment, you can access them
through the Music Segment Editor, where any combination of audio and MIDI
tracks can be arranged and edited within the Music Segment.

E5 MIDI_Project_Adwenture - Music Segment Editor - 1 child

Snap to: |Bars/Beats 'I::'Iipstur:nps Envelopes: | Lowpass Highpass Volume

Voice Volume ||

Editing tracks in the Music Segment Editor

MIDI Tracks within a Music Segment exhibit the same behavior and functionality as
an audio file, with one exception: audio properties are not modifiable in the Music

Segment. Since MIDI is a data representation only, the audio properties are a part of
the MIDI Target or "Instrument".

172

Adventures in MIDI

The MIDI Target and MIDI Clip Tempo can be defined for either the Music Segment
(Parent) or Music Track (Child) in the MIDI tab in the Music Segment Property
Editor or Music Track Editor.

MIDI_Project_Adventure - Music Segment Pr... 4P NP 2/ X
. Name
MIDI_Project_Adventure

General Settings Source Settings Effects Positioning
RTPC States Stingers HDR
Mixer Plug-in Motion MIDI Advanced Settings

MIDI Target

MIDI Clip Tempo

Source

The MIDI tab in the Music Segment Property Editor

The MIDI Target is specified as the Sound Object through which all MIDI events
are routed. This property can target a specific Sound Object or a Blend Container
including multiple Sound Objects, each with their own individual MIDI properties.

The MIDI Target can be assigned to a Music Segment or Music Track by navigating
to a Sound Object through the Project Explorer - Browser or by dragging and
dropping a Sound Object from the Actor-Mixer Hierarchy onto the MIDI Target
field.

173

Adventures in MIDI

FlEdl-dl| = MIDI Project Adventure - Music Segment Pro...

Events SoundBanks GameSyncs ShareSets [ENEH| | MName
MIDI_Project_Adwventure
] :r Master-Micer Hierarchy General Settings Source Settings Effects
= @ Actor-Mixer Hierarchy ez o A, z ;
M Default Work Unit Positioning RTPC States Stingers HOR.

Mixer Plug-in Mation MIDI Advanced Settings

-+ + |

MIDI Target

|+

& MIDI_Project_Adventure_SynthCne

] Magic
M Mation MIDI Clip Tempo
Ut
()| Waice

Interactive Music Hierarchy
M Default Work Unit

N
Baooom

Source Hierarchy
-

[+ MIDI_Project_Adventure

Assigning the MIDI Target using drag and drop
(1) or using the Project Explorer - Browser (2)

A MIDI Clip can use either the Tempo specified in the MIDI file to control its tempo
or it can use the tempo set for the Music Segment.

The MIDI Clip Tempo can either use tempo information from the General Settings
tempo specifications for the Music Track hierarchy or tempo from the (MIDI) file.

MIDI Clip Tempa

Source Hierarchy

Hierarch '!' .

Assigning the MIDI Clip Tempo Source

There are some caveats to using MIDI Clip tempo information within the Wwise
Music System:

+ Transition scheduling between segments is always done using the tempo set for the
segment and is never influenced by tempo events indicated in the MIDI clips/files.

« Triggers are scheduled to play on the beat, bar, grid of the music segment and not
based on the tempo of the MIDI clips/files.

+ MIDI files/clips can be exported with one or more tempo changes and, if the
option 'file' is selected, the clip will listen to these tempo changes to play back the
MIDI notes and CC on time.

174

Adventures in MIDI

+ These MIDI file/clip-based tempo changes do not influence the tempo of the
Segment; thus MIDI clip and segment transitions can easily become out of sync.

Section Summary

In this section we have imported a MIDI file and described the track-specific
MIDI functionality. The MIDI file is the currency of communication between a
composition created within a DAW and its eventual presentation in the game.

175

Adventures in MIDI

Setting up Wwise Synth One

Before we begin working with MIDI in the Interactive Music Hierarchy, let’s take a
look at the synthesizer functionality of the Wwise Synth One source plug-in.

5.3 "Wwise Synth One - Source Editor AP NP 2]
Mame Source Plug-n
| Wwise Syrth One
| EffectSettings RTPC
Input
Frequency Mode Base Frequency Base Frequency]' 1000

Osdllator 1 Qsdllator 2 Moise

Waveform i Waveform i \ois 3 I White Moise

Transpose | Transpose] Moise Level J -36

Level il Level

PWM PWM

Cutput

Mode f Mizx

Source Editor - Wwise Synth One

*+ Input
+ Frequency Mode - The source of the input frequency used by the oscillators.
+ Base Frequency - Frequency is obtained from the Base Frequency property.
+ Midi Note - Frequency is obtained from received MIDI note events.
* Base Frequency
+ 20-20000 Hz - Input frequency for oscillators in Hz.

+ 2 Oscillators

* 4 Waveform Types - Available for each Oscillator.
+ Sine
+ Triangle
+ Square
+ Sawtooth

+ Transpose: The Pitch of the Oscillator
+ -3600 to +3600 cents - Transposition of input frequency, in cents.

+ Level - Output level of Oscillator, in dB, applied before the Oscillators are
combined.

+ PWM (Pulse Width Modulation) - A technique that conforms the width of the
pulse based on the modulator signal.

176

Adventures in MIDI

+ Invert - Inverts the Output of the Oscillator.
+ Output - How the Oscillator outputs are combined
* Mode
+ Mix: the samples are added
+ Ring: the samples are multiplied

* FM (Frequency Modulation) - This value determines how much of Oscillator
2's output is used to generate oscillator 1's output.

+ 20-20000 Hz

+ Level (Volume) - Level applied to the final signal (combined Oscillator outputs
mixed with noise generator output).

* Noise

+ Noise Shape - The type of noise generated.
+ White Noise
+ Pink Noise

+ Noise Level (Volume): Level applied to the output of the noise module, in dB.

The level is applied before the output of the noise module is mixed with the
combined Oscillator outputs.

Adventures in Synthesis

The MIDI Project Adventure uses four instruments that were recreated using the
functionality of the Wwise Synth One plug-in. These instruments include: two lead
square wave synths, a bass synth comprised of a combination of sine and sawtooth
waveforms, and a percussion synth utilizing white noise. Experimentation is the key
when working with synthesis, and often the best sounding synths are the result of the
creative exploration within the limitations of a feature set.

Here are some things to keep in mind when designing your synths:

+ RTPC: Real Time Parameter Control can be used in conjunction with a Game
Parameter set by the game or internally from Wwise as part of a Wwise Meter
effect plug-in to output a game parameter to modify properties of the synth.

* Modulator Envelope: Modulator Envelopes can be used to control the Attack,
Decay, Sustain, Release and other Envelope behaviors of any property that can be
modified using RTPC.

* Modulator LFO: Modulator LFOs can be used to modify the properties of Wwise
Synth One as a RTPC which can produce wildly varied dynamics.

"‘3 Designer Note
For more information on Modulator LFOs and Modulator Envelopes, see
the 'Modulators' section in the Making Magic chapter.

177

Adventures in MIDI

The Wwise Synth One plug-in can be added as an input source to a Sound SFX in
the same way that the Silence plug-in was added in Chapter 1. To being add Sound
SEX object to the default work unit by clicking the Sound SFX icon in the Project
Explorer toolbar, a new Sound SFX is created. Alternately, Sound SFX can be created
from the contextual menu or by using shortcut keys.

Project Explorer [1][Z]

IT‘ "' 147 ..l
= @ Master-Mibcer Hierarchy

M Default Work Unit
= @ Actor-Mixer Hierarchy
= (N Default Work Unit*
* iew Sound sFx

Creating a Sound SFX from the Project Explorer toolbar

After double-clicking to select the new Sound SFX, you can add the Wwise Synth
One plug-in from the Add Source menu in the Contents Editor.

New Sound SFX - Contents Editor - 1 child
Marme Freguency Mode BaseFrequency Motes
SFX Add Source =

= Whwise Synth One Baze Freq... CrankcasefAudio REV
SoundSeed Air 3
Wwise Audie Input

Wwise External Source

Wwvise MP3 Input

Wiwise Silence

Wwise Sine

Wwise Synth COne I
Wwise Tone Generator

Creating a Wwise Synth One source plug-in for a sound object

The Source Editor can be accessed in the Contents Editor by double-clicking the
plug-in icon.

178

Adventures in MIDI

f2§ New Sound SFX - Contents Editor - 1 child 2/X
Mame Frequency Mode BaseFrequency — Outputlevel
= Add Source =

=& Whwise Synth One Base Freq... 1000

Source plug-in icon for Wwise Synth One

&8 Vinise Synth One - Source Editor [2 2 2 X

MNarme Source Plug-n
Wwise Synth One
Effect Settings RTPC
Input
Freguency Mode Base Frequency Base Frequency f
Osdillator 1 Osdllator 2 MNoise
Waveform [[| Sine Waveform
Transpose]| Transpose
Level

FW/M

Output

Mode I' Minc

Wwise Synth One - Source Editor

The name of the Wwise Synth One source plug-in can now be renamed in the Source
Editor to reflect its intended use.

&8 Wise Synth One_Square_01 - Source Editor |

Name Source Plug-in

Wwise Synth One_Square_01

Effect Settings RTPC

Renaming the Wwise Synth One plug-in in the Source Editor

The synth can be auditioned by selecting the Sound Object in the Actor-Mixer
hierarchy and pressing 'Play’ (or Spacebar).

179

Adventures in MIDI

By default, the Input Frequency Mode is set to Base Frequency and uses the Base
Frequency property value in Hz as an input for the Oscillators. To use the Wwise
Synth One plug-in in conjunction with a MIDI file, the Input must be set to MIDI
Note.

ise Synth One_Square_01 - Source Editor

MName Source Plug-n Notes

Wwise Synth One_Square_01
Effect Settings RTPC
Input
Frequency Mode MIDI Note Base Frequency
Osdllator 1 Osdillator 2 Moise

Moige Shape |[| White Naise
Moise Level]| 56

Invert
Dutput
Mode |]] Mix

Setting the Input Frequency Mode to MIDI Note in the Source Editor

Without much effort, a basic instance of the Wwise Synth One plug-in can be ready
for use in conjunction with a MIDI file (or files).

Section Summary

The process and methodology of synthesis is a well-established part of creative music
making. The inclusion of Wwise Synth One as part of the runtime functionality of
the Wwise audio engine opens up a wide-range of capabilities to harness the power
of realtime sound synthesis. The ability to modify properties dynamically unlocks a
veritable treasure-trove of interactive possibilities.

180

Adventures in MIDI

Connecting MIDI & Sound

The compositional task has its underpinnings in the graphical representation

of notes and behaviors. Whether on manuscript (staff) paper, a "piano roll", or
beneath the surface of a DAW as MIDI notes, the notation serves as a mechanism to
communicate the intended performance to be played back by performers or their
mechanical/ digital equivalent. Operating below the surface of most computer-
based composition tools, MIDI has provided a consistent and standardized way

to represent a composer's musical intention. Wwise acts as an interpretor for this
intention and can be used to play back and participate in the interaction between the
composition and the "game as performer" modifying properties of the composition
in realtime.

A MIDI file from a DAW must be exported with special considerations for use

in the Wwise Authoring Application. Specifically, any tempo and MIDI channel
configurations should be assigned in correlation to their expected use. Wwise will, by
default, use the tempo and MIDI channel assignments exported in the MIDI file to
control these aspects.

Importing the Individual MIDI Tracks

The instrument tracks have been exported from a DAW as four individual files which
represent the different instruments:

+ MIDI_Project_Adventure_Square_01.mid

+ MIDI_Project_Adventure_Square_02.mid

+ MIDI_Project_Adventure_Bass.mid

+ MIDI_Project_Adventure_Drums.mid

Each file has been output at a tempo of 140BPM, all channels (Omni), and full
Velocity.

MIDI files can be imported as Music Segments or as tracks within an existing Music
Segment by either using the Audio File Importer or by dragging and dropping them
into the Interactive Music Hierarchy. After files have been added as tracks to the
segment, they can be accessed through the Music Segment Editor like any other
music track.

181

Adventures in MIDI

Audio File Importer 2

Import Mode: Create new objects

Add Files... Add Folders... Import Tab Delimited. ..

Aud fFolder emplate | Obj ion Ohjec ile 5 ate Modified

WMIDI_Project_Adventure_Bass.mid MNone Music Tra] MIDI_Project_Adventure_Bass 6/29{20146:27 PM

MIDI_Project_Adventure_Drums.mi >> MNone Music Track) MIDI_Project_Adventure_Drums B 723Bytes 6/29/20146:27PM
MIDI_Project_Adventure_Square_(= MNone Music Tradk) MIDI_Project_Adventure_Square_01 [l 715Bytes &/29/20146:27PM

\MIDI_Project_Adventure_Square_{ >> MNone Music Track {J MIDI_Project_Adventure_Square_02 [l 1.3KB 6/29/20146:28 PM

Template match mode: Match all Import Cancel

The Audio File Importer showing multiple
MIDI files to be imported as Music Tracks

After MIDI files have been added as tracks to the segment, you can access them
through the Music Segment Editor, where any combination of audio and MIDI
tracks can be arranged and edited within the Music Segment.

B8] MIDI_Project_adventure_Multiple_MIDI_Tracks_Single_MIDI_Channel - Music Segment Editor - 4 children 4|

Snap to: | Bars/Beats Cues Clips/Loops Envelopes: | Lowpass Highpass Volume

JIMIDI_Project_Adverture_Square_01

Editing tracks in the Music Segment Editor

MIDI Tracks within a Music Segment exhibit the same behavior and functionality
as an audio file. (as explained in Chapter 7. Adventures in Music - The Layered
Approach - Creating the Ambient Music Segment)

Each track needs to be associated with a Sound Object that is used to play back
information communicated from the MIDI file.

182

Adventures in MIDI

Music Segment MIDI Properties

The MIDI Target and MIDI Clip Tempo can be defined for either the Music Segment
(Parent) or Music Track (Child) in the MIDI tab in Music Segment Property Editor
or Music Track Editor.

The MIDI Target is specified as the Sound Object through which all MIDI Events
are routed. This property can target a specific Sound Object or a Blend Container
including multiple Sound Objects, each with their own individual MIDI properties.

MIDI_Project_Adventure - Music Segment Pr... 4P \P [2/X
Name
MIDI_Project_Adventure

General Settings Source Settings Effects Positioning
RTPC States Stingers HDR
Mixer Plug-in Motion MIDI Advanced Settings

MIDI Target

MIDI Clip Tempo

Source Hierarchy

The MIDI tab in the Music Segment Property Editor

The MIDI Target can be assigned to a Music Segment or Music Track by navigating
to a Sound Object through the Project Explorer - Browser or by dragging and
dropping a Sound Object from the Actor-Mixer Hierarchy onto the MIDI Target
field.

183

Adventures in MIDI

[MIDI_Project_Adventure, usic Track Property Editor
Events SoundBanks Game Syncs ShareSets Se Juerie Mame
MIDI_Project_Adwventure_Bass

= @ Master-Mixer Hierarchy

) Default Work Unit S
= @ Actor-Mixer Hierarchy MIDI T.:r;l:t
(| Default Wark Unit Tuzrizza
¥ Ambient N
M) Character
") Combat
(") Instruments

General Settings ~ Source Settings Effects Positioning

I+ -+

MIDI Clip Tempo
Override parent

- @ MIDI_Project_Adventure_Multiple_MIDI_Tracks_Single_MIDI_Chz

> MIDI_Project_Adventure_Single_MIDI_Track_Multiple_MIDI_Channels
[+] (*) Magic
+| [¥] Motion

Snap to: |Bars/Beats Cues Clips/Loops Envelopes

| (1) BUE

[¥) | Voice
= B Interactive Music Hierarchy
M Default Work Unit
m i

= MIDI_Project_Adventure

Assigning the MIDI Target using drag and drop
(1) or using the Project Explorer - Browser (2)

Wwise can use the Tempo map to control the tempo (exported as part of the MIDI
file) or use the tempo specification set for the sound object in the Interactive Music
Hierarchy.

The imported MIDI tracks use the MIDI Clip Tempo information from the (MIDI)
file to control their tempo.

The composition can now be auditioned by selecting the Music Segment in the
Interactive Music hierarchy and pressing 'Play' (or Spacebar).

Sound Object MIDI Properties

Additional MIDI properties are located in the MIDI Tab for the parent Sound
Object. These properties can be used to: control the behavior of incoming MIDI
Events, transform the transposition or velocity offset of MIDI data before it is
executed, or filter incoming MIDI data. These techniques can be particularly useful
when building instruments comprised of multiple samples, synthesizers, or any
combination to be targeted by a MIDI file.

184

Adventures in MIDI

Synth_Square_01 - Sound Property Editor 7]

Mame PF Notes E
Synth_Square_01 M 5

Source Settings Effects Positioning

MIDI Advanced Settings ¥+
Keymap Editor...

MIDI Events
Cverride parent

Mote Tracking
Cverride parent

Transformation

Transposition]| 0 Velodty Offset |[

Filters

kKey Range

Velodty

Channel

Sound Object properties in the MIDI Tab of the Sound Property Editor

Sound Object MIDI Properties include:
+ Keymap Editor - Inspects the object in the MIDI Keymap Editor.

* MIDI Events

185

Adventures in MIDI

+ Opverride parent - Determines whether the MIDI events controls are inherited
from the parent or defined at the current level in the hierarchy. When this
option is not selected, the MIDI Events controls are unavailable.

If the object is a top-level object, this option is unavailable.

+ Play On - Determines what type of MIDI note event will cause the object to
play.

+ Note-On - Plays the object on Note-On.
+ Note-Off - Plays the object on Note-Off.

+ Break On Note-Off - If Play On is set to Note-On, this property determines
whether the playing object stops looping upon reception of a note-oft. If so, the
playback of looped sounds or continuous containers is stopped, while allowing
the current object(s) to finish playing.

+ Note Tracking:

* Override parent - Determines whether the Note Tracking controls are inherited
from the parent or defined at the current level in the hierarchy. When this
option is not selected, the Note Tracking controls are unavailable. If the object is
a top-level object, this option is unavailable.

+ Enable - If selected, the node's playback is pitch-shifted. The amount of pitch-
shifting is determined by the note of the received MIDI event and the value of
Root Note.

* Default Value: false

* Root Note - The root note of the node's sound. This value is used in
conjunction with a received MIDI note to determine the pitch-shifting of the
node's sound.

* Default Value: C4
+ Transformation:

+ Transposition - The offset applied to the MIDI event's note. The transposition
is applied before the Key Range filters.

« Default Value: 0

+ Velocity Offset - The offset applied to the MIDI event's note velocity. This
applies to MIDI note events only. The offset is applied before the Velocity filters.

« Default Value: 0
 Filters

+ Key Range - Filter applied to received MIDI note event's note. A received MIDI
note event is ignored if its note is not within the Min-Max range.

+ Default Min: C-1 Default Max: G9

Note: The mapping of numerical MIDI notes to octaves is specified via the
user preferences; refer to: Wwise Help > Wwise Reference > Projects > User
Preferences for more details.

186

Adventures in MIDI

* Velocity - Filter applied to received MIDI note event's velocity. A received MIDI
note event is ignored if its velocity is not within the Min-Max range.

» Default Min: 0 Default Max: 127

+ Channel - Filter applied to received MIDI note event's channel. A received
MIDI note event is ignored if its channel is not in the filter.

* Default: 1-16

Section Summary

As another feature in the expanding Wwise Authoring Application, MIDI can be
employed as the right technique for the right situation. Leveraging small sample-
sets, synthesis, and the power and flexibility of MIDI can help balance out the use
of resources across resident memory (size on disk or RAM) and processing (CPU).
Depending on the constraints of your target platform and the desired aesthetic,
MIDI can be a powerful ally towards maximizing resources and creating a dynamic
audio experience.

187

Adventures in MIDI

MIDI Summary

Like a hero fallen from grace, the return of MIDI comes with the knowledge of past
battles and the remembrance of the way it used to be. Some of this knowledge can
be immediately put to use navigating through the dawning of a new era for MIDI;
experience with: creating sample-sets, MIDI channel assignment, velocity, and
MIDI Events. Harnessing the inherent efficiency, dynamism, and flexibility of MIDI
heralds the return of a well tested methodology. However, some parts of MIDI still
hold negative connotations that need to be minimized; "bad" sounding, difficult
workflow, and general prejudice work against the fundamental structure that MIDI
makes available.

Throughout this chapter we have:

+ Imported MIDI Files

+ Added MIDI Files to a Music Track

+ Made Modifications to the MIDI Target

+ Adjusted the MIDI Clip Tempo

+ Looked at the synthesizer functionality of the Wwise Synth One
+ Talked about preparing music content for integration.

Stepped through the process of:
+ Importing MIDI files.
+ Setting up the Wwise Synth One plug-in.
+ Creating a multitrack composition comprised of:
+ Four MIDI tracks representing different instruments.
+ Four Wwise Synth One synths representing different instruments.

We've also touched on:

+ Advanced functionality of the MIDI format.

Throughout this section we have created the following objects:
+ A Music Segment containing a MIDI file with individual channels, each targeting
instances of Wwise Synth One which represent the different instruments.

* A Music Segment containing four individual MIDI files, each targeting instances
of Wwise Synth One which represent the different instruments.

188

Adventures in MIDI

Music Additional Resources
Wwise Knowledge Base - Advanced settings playback limits and interactive music
Wwise Knowledge Base - Looping and streaming of audio clips and interactive music
Wwise Knowledge Base - Understanding the Interactive Music Engine
Wwise Knowledge Base - Interleaved Streaming in Interactive Music
Wwise Knowledge Base - Using States with the Interactive Music Hierarchy
Video Tutorial - Creating Interactive Music Structures
Video Tutorial - Defining Interactive Music Transitions
Video Tutorial - Creating Stingers

Game Sound Design - Making Music Interactive: Elaboration of the Feature Set in
Wwise

Game Sound Design - Dynamic Music Creation Using Wwise

189

http://kb.gowwise.com/questions/204/Advanced+settings+playback+limits+and+interactive+music
http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music
http://kb.gowwise.com/questions/176/Understanding+the+Interactive+Music+Engine
http://kb.gowwise.com/questions/179/Interleaved+Streaming+in+Interactive+Music
http://kb.gowwise.com/questions/177/Using+States+with+the+Interactive+Music+Hierarchy
http://www.youtube.com/watch?v=Zvnt3tbL3OU&hd=1
http://www.youtube.com/watch?v=STAdQwgDYHQ&hd=1
http://www.youtube.com/watch?v=fLrz463kVEI
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/in-depth-creation-of-dynamic-music-in-a-video-game.html

Chapter 9. Mastering the Mix

OVEIVIEW oottt 191
Routing with Audio BUSSESc.cecueriiririiiniiiieiecieeeeretee e 192
Routing with AuXiliary BUSSEScccceeveeviiriierieninienteeneectereeeesee et 194
Using AUXILIATY SENAS ..ccuvevueiviirieniieiieieniteieeteseeteetese ettt 196
User-Defined Auxiliary Sendscceceeeeevieriieneriienienienieneeneneesieesreseeneene 197
Game-Defined Auxiliary Sendscccceeveeveeveriienieneniienieeneneceeeeseee 199
States and MixX SNapshotsccoceevieiieniiiiiieneee e 201
Auto-Ducking vs. Side-Chainingc..cecceevievieneriieniiienieneeieneeseeeeeeeesve e 203
AULO-DUCKING ..ttt 203
Side-Chaining ...coceeeeevierienieierierteeet ettt st 204
Mixing With RTPC ...ooiiiiiiiiiiiiieeeeeeeeteeeeee ettt 204
Using Effects in the Master-MiXercccevvererererenirieieneenieneesiesseseeeeeeseensenaens 206
Visualizing the MixXing Deskc.ccoviiviriiiniiiiniiniiinieneeeseseeeeeeiee e 207
Mixing Techniques for AtteNUAtIONScoeevuerierirrierieneeteeeere et 209
MIX SUIMIMATY .ottt ne s 210
Mixing Additional ReSOUICES:ccervuiriiririieniiniiierteeeteetere et 211

190

Mastering the Mix

Overview

Heading into the final mix is not unlike entering into battle with a fire breathing
dragon. By the time you arrive at the scene of the last stand against the bloodthirsty
creature, you've hopefully equipped yourself with the every skill and weapon in your
arsenal in order to belay the beast into submission. As the signal flow winds its way
through the labyrinth of routing possibilities, you know you have the flexibility to
reshape the audio path and the power to commandeer the ultimate mix.

From a single instance of a sound played back by an audio engine, to the potentially
massive pile-up of sounds happening in a single frame, the race is on to make sure
that the right sounds are heard throughout the game. Whereas the Mix title has been
appropriated from the music and film world where it represents a time locked and
non-interactive representation of sound, its use in game audio tends to be a bit more
nebulous. Using a combination of dynamic mix-related methodologies and available
techniques to balance the final sound output has become one of this generation's
greatest challenges.

This chapter takes you through the process of:

*+ Routing with Audio Busses.

*+ Routing with Auxiliary Busses

+ Using Auxiliary Sends.

+ States and Mix Snapshots.

* Auto-ducking vs. Side-chaining.

+ Mixing with RTPC.

+ Using effects in the Master-Mixer.
+ Environmental reverb.

+ Reorganizing the Master-Mixer.

* Visualizing the mixing desk.

+ Mixing techniques for attenuations.

191

Mastering the Mix

Routing with Audio Busses

Anyone who has worked with hardware or software mixers in the past can appreciate
the Master-Mixer hierarchy in Wwise with its customizable interface for routing
audio signals from sound objects throughout the project. You can establish

a comprehensive and flexible representation of the signal flow by adding and
organizing audio and auxiliary busses.

Fundamentally, audio busses are a way to balance volumes, add eftects, apply RTPC,
and state-based changes. Audio busses can be added to the Master-Mixer hierarchy
by selecting an existing audio bus and then clicking the audio bus icon in the Project
Explorer toolbar. A new audio bus is created as a child of the selected audio bus.

Project Explorer 7]

Audio Events SoundBanks Game Syncs

== W=

= B Master-Mixer Hierarchy

= (M Default Work Unit
= =B= Master Audio Bus

== Mew Audio Bus

Creating an audio bus from the Project Explorer toolbar

After an audio bus has been created, it can be assigned to any sound object via the
General Settings tab in the Property Editor. Audio busses can be assigned to a sound
object by either navigating to the Bus through the Project Explorer - Browser, or by
simply dragging and dropping an audio bus from the Master-Mixer onto the Audio
Output Bus field.

onversion Settings Effects Positioning RTPC States Motion

Voice Dutput Bus

'l.-'EIurnE Low-pass filter Hi_|;|h—|:|ass filter
]ORN | SSSNOR {0 —

Audio output bus and settings in the Property Editor

192

Mastering the Mix

Audio busses can be configured and reconfigured to suit the developing needs of any
project. Dragging and dropping audio busses within the Master-Mixer hierarchy also
maintains any assignments for routing that have been established for a sound object.

Praoject Explorer a Ambient_Background - Actor-Mixer Property Editor

Audio Events SoundBanks Gam B | Mame
L Ambient_Background E PF
= @@ Master-Mixer Hierarchy

= (0 Default Work Unit
| ter Audio Bus Voice Cutput Bus

Ambient
®= Master Motion Bus

@ Actor-Mixer Hierarchy ELH

@ Interactive Music Hierarchy

General Settings Conversion Settings Effects Positioning RTPC States Motion

Volume Low-pass filter High-pass filter
NN S | —

Assigning the audio output bus of a sound object using drag
and drop (1) or using the Project Explorer - Browser (2)

In the previous image, once the “Ambient” audio output bus has been assigned, any
sound output from the “Ambient_Background” Actor-Mixer is routed through the
“Ambient” audio bus. The output bus volume and audio output bus low pass filter
settings control the amount of volume or low pass filter from the sound object that is
passed to the audio output bus. Furthermore, the properties set for the audio bus in
the Master-Mixer hierarchy govern the final output.

193

Mastering the Mix

Routing with Auxiliary Busses

An auxiliary bus is organized within the Master-Mixer hierarchy in the same way as

a standard audio bus. Each auxiliary bus can manage up to four effects which can be
enabled or disabled programmatically or with game parameters. Auxiliary busses can
also be positioned within the Master-Mixer hierarchy as children of other audio or
auxiliary busses, allowing for more than four effects in a series.

The process begins by adding an auxiliary bus to the Master-Mixer hierarchy by
selecting an existing audio or auxiliary bus and then clicking the auxiliary bus icon in

the Project Explorer toolbar. A new auxiliary bus is created as a child of the selected
audio or auxiliary bus.

Project Explorer ?|

Audio Events SoundBanks GameS

= @@ Master-Mixer Hierarchy
= N Default Work Unit®
=

Creating an auxiliary bus from the Project Explorer toolbar

Each auxiliary bus includes metering and allows you to set volume, add effects,
RTPC, as well as apply changes based on state.

194

Mastering the Mix

Mame
Amulet

General Settings Effects

]
Yolume

Channel Configuration

Parent

General Settings tab of the auxiliary bus in the Property Editor

195

Mastering the Mix

Using Auxiliary Sends

Traditionally, auxiliary sends are used to route an audio signal to a set of effects that
are then applied to any audio signal as a whole. In other words, an auxiliary send is a
convenient way to route the output of a sound object in the Actor-Mixer hierarchy to
an auxiliary bus within the Master-Mixer Hierarchy.

There are two types of auxiliary sends in Wwise:

+ User-defined auxiliary sends
+ Game-defined auxiliary sends

A sound object can use one or both types of auxiliary send from the General Settings
tab in the Property Editor. The different types of auxiliary send behave in exactly the
same way. Sends from a sound object can be mixed and matched between the two
types within the authoring application.

Conversion Settings Effects Positioning RTPC States Motion

III|I i | ce ':I U u:| | t Ei s

Yolume Low-pass filter High-pass filter
f 0 f 0 f 0

Game-Defined Auxliary Sends

0
Volume

Pitch
Ml 0

Volume [0

User-Defined Auxiliary Sends

Low-pass filter
T 0 ID | Auxiliary Bus Yolume

: N: New_Auxliary Bus - Hiu
High-pass filter

f— o

Defining auxiliary sends in the General Settings tab of the Property Editor

196

Mastering the Mix

The auxiliary send is controlled in two different ways:

+ User-defined: Per sound object in Wwise.
+ Game-defined: Per game object using the SDK API.

The send volume related to an auxiliary bus within the Master-Mixer hierarchy
is independent of the audio output bus volume and routing. This allows for the
creative application of effects and other interactive mixing techniques.

User-Defined Auxiliary Sends

Up to four user-defined auxiliary busses can be assigned to any sound object in the
Actor-Mixer hierarchy. The send volume is the level or amplitude of the audio signal
that is sent to an auxiliary bus that can also be parameterized using RTPC. User-
defined auxiliary busses are assigned in the General Settings tab of the Property
Editor.

Conversion Settings Effects Positioning RTPC States Motion

Voice Cutput Bus

Volume Low-pass filter High-pass filter
f 0 f 0 | 0

Game-Defined Auxiliary Sends

Use game-defined auxiliary sends
Volume [0
0 ——
Valume User-Defined Auxiliary Sends
Pitch
M 0

—) | Auxiliary Bus Yolume
Low-pass filter 0 %= New_Auxiliary Bus B H

i 0
High-pass filter

I 1]

User-defined auxiliary sends in the Property Editor

197

Mastering the Mix

In this example we will create a user-defined auxiliary send that is used to apply a
magical effect to certain sound types in the project when our hero is in danger. The
auxiliary bus will contain a chain of effects that utilize the "Danger" game parameter
to adjust various properties. Modifying the sound of weapon swings and magic will
be used as an indicator of danger and will enhance the dynamic aspects of battle.

The source of our hero’s power stems from an ancient amulet, and so we

will name the newly created auxiliary bus “Amulet”. In this example we’ll be
routing the output of the “Swing Weapon_Type” switch container and of the
“magic_blast_fire_distance_blend” blend container to the Amulet auxiliary bus.

Any existing auxiliary bus can be assigned to sound objects by either navigating to
the bus through the Project Explorer - Browser, or by simply dragging and dropping
the auxiliary bus from the Master-Mixer hierarchy onto the “Auxiliary Bus” field in
the User-Defined Auxiliary Sends section of the Property Editor.

i Swing_Weapon_Type - Switch Container Property Editor Project Explorer - Browser

Events SoundBanks Game = Name Notes
Swing_Weapon_Type 5 PF

Select an ausdiary bus

Hone

Master-Mixer Hierarchy
®

ion Settings Effects Positoning RTPC States Motion

Low-pass filter High-pass filter
%= Amulet

™ Default Work Unit

Volume
B [jawa
(U]
[u] '
[u]
= @@ Interactive Music Hierarchy
™ Default Work Unit
[u]

Assigning the auxiliary bus of a sound object using drag
and drop (1) or using the Project Explorer - Browser (2)

Once a sound object routes a signal to an auxiliary bus, the send volume can be
adjusted. Adding and adjusting effects can now be applied to the “Amulet” auxiliary
bus to communicate a sense of magical change when our hero is in danger. In this
example, a custom “Wwise Guitar Distortion” has been added as the first effect and
has been set to increase the wet/dry mix based on the "Danger" game parameter.
Additionally a “Wwise Tremolo” has been added as the second effect, with the LFO
depth controlled by the "Danger" game parameter.

198

Mastering the Mix

L2 Amulet - Audio Bus Property Editor 7|

Name

Effects RTPC States

ID |Effect Name rev, |Next | Mode Bypass | Edit

Wwise Guitar Distortion Default (Custom) < £ Define custom]

1]
1 Wwise Tremolo Tremolo\Boomerang {Custom) = = Define custom i
.
3

[| Bypass Al

A chain of effects on the “Amulet” auxiliary bus

Designer Note

The user-defined auxiliary bus routing cannot be changed at runtime, but
the game can use the SetBusEffect() and SetActorMixerEffect() functions
to set different effects ShareSets to the auxiliary bus. This method allows
for the application of environment acoustics in your game, but with a
finer granularity (per audio object and additionally per game object).

By controlling auxiliary sends you can apply creative and runtime-conscious special
effects throughout the project.

Game-Defined Auxiliary Sends

In addition to setting user-defined auxiliary busses, up to four game-defined
auxiliary busses can be set by the game engine or managed programmatically outside
of the authoring application for each game object. Auxiliary busses defined by the
game can be used for reverbs, game-state dependant effects, interactive mixing, or
any other game-defined usage. Additionally, the sound designer has control from the
user interface to enable and offset the game-defined auxiliary send volumes on a per
sound basis from the General Settings tab in the Property Editor.

199

Mastering the Mix

E maagic_blast_fire_distance_blend - Blend Container Property Editor
Mame Motes

magic_blast_fire_distance_blend

General i Conversion Settings Effects Positioning RTPC States Motion

Voice

Output Bus

Volume Low-pass filter High-pass filter
f 0 f 0 f 0

Game-Defined Auxiliary Sends

Use game-defined auxdliary sends

User-Defined Auxliary Sends

Low-pass filter
f 0 ID | Auxiliary Bus Volume

: S: Amulet - Hiu
High-pass filter

Tl 0

Enabling game-defined auxiliary sends in the Property Editor

Game objects can be routed to a combination of game-defined and user-defined
auxiliary busses for a total of eight independent auxiliary targets (four game-defined
and four user-defined).

Q Designer Note
The final send volume is the combination of the game-defined auxiliary
send volume from the UI and the SetGameObjectAuxSendValues() SDK
function set by a programmer.

200

Mastering the Mix

States and Mix Snapshots

Another powerful practice for manipulating an interactive mix is by using states,

or in this context, mix snapshots. States can be directly related to, and commonly
referred as, game states such as: combat, stealth, idle. They can also be used to define
spaces such as a forest, hallway, or dungeon and, furthermore, can be abstracted

to define any circumstance under which you may want to change the sound of the
game. States are usually defined in the game engine and triggered within Wwise,
where you can combine multiple states simultaneously.

Designer Note

When an object is registered to multiple states, a single property can

be affected by multiple value changes. In this scenario, each change of
value is added up together. For example, when two states in two different
state groups have a volume change of -6 dB, and both become active
simultaneously, the resulting volume will be -12 dB.

Due to the non-linear progression and randomness inherent in most games, it is
often desirable to plan for a mix that can respond to events in the game dynamically
as opposed to a static mix that does not change based on circumstances within

the game. By using state changes to modify the properties of different mix busses,
you can create a system for dynamically mixing the game. In a sense, it is like
programming an artificial intelligence that is able to make changes to the mix in
accordance with the rules specified by the sound designer.

States are defined in the game syncs tab of the Project Explorer and include settings
for defining a default transition time or custom transitions based on changes
between specific states.

Project Explorer m gameplay - State Group Property Editor

Audio Events SoundBanks GameSyncs [ENEH| | Mame
O gameplay
2 B Switches
= I States
M Default Work Unit
= (M Music_State

Transitions
Default transition time
Custom Transition Time
©| ambient From Time
Game Parameters ambient
L action
= B Arguments

Defining states and setting default and custom transition times

201

Mastering the Mix

Once states have been established, properties that can be affected by state changes are
available for any audio object or audio bus by adding a state in the States tab.

T Ambient - Audio Bus Property Editor 2/X
Mame Motes

Ambiert ME Bs

Gen ttings Effects RTPC States Advanced Settings

Copy States Values...

Volume Pitch ow Pass Filter | Change occurs at

Immediate

State based volume reduction of the ambient bus when in the action state

For more information on states:
Wwise Help > Interacting with the Game > Working with States
Wwise Knowledge Base - Using Multiple States to Affect Sounds

Wwise Knowledge base - Creating a Temporary Loss of Hearing Effect

202

http://kb.gowwise.com/questions/22/Using+Multiple+States+to+Affect+Sounds
http://kb.gowwise.com/questions/18/Creating+a+Temporary+Loss+of+Hearing+Effect

Mastering the Mix

Auto-Ducking vs. Side-Chaining

While mix states give explicitly defined control over properties, you can also
automate volume reduction based on an incoming signal from another audio bus.
This process is often referred to as ducking.

Designer Note

Ducking allows you to automatically lower the volume level of all objects
passing through one bus in order for another simultaneous bus to have

more prominence.

Auto-Ducking

Wwise allows for Auto-ducking through the General Setting tab on any audio bus.
Simply insert any other bus into the Auto-ducking window and define the volume
attenuation and fade in/out properties.

"TR Character - Audio Bus Property Editor
MName Motes

Character

General Settings Effects RTPC States Advanced Settings

Bus Meter

M ilable when the bus is
not mixing.

Maximum ducking velume:

Insert...
Volume Fade Out |Fade In Curve

.] 1 1

Volume — —
Volce
Volume

0

Channel Configuration

Parent

Character audio bus automatically ducking Ambient audio
bus by -6 dB over a period of one second using a linear curve

Auto-ducking begins when the selected bus receives any signal and applies the set
attenuation to any inserted busses for the duration of a signal, including silence.

203

Mastering the Mix

Auto-ducking Fade Cut Fade In
enabled
R*
0 —_— L 4
E Ducking
E Walume
o
-
Auto-ducking Recovery
dizabled Tirne
Time
Side-Chaining

Another approach to ducking is through the use of Side-Chaining. Side-chaining
consists of monitoring the level of an audio signal and using it to manipulate another
audio signal. A concrete example of side-chaining occurs in radio broadcasting
where a DJ's voice automatically ducks the music volume.

When using Side-Chaining as part of mixing, you are essentially taking volume
information from input signal with the Wwise Meter effect and using it to affect
other parts of the mix.

2 Designer Note
More information about side-chaining:

http://www.audiokinetic.com/download/documents/
Wwise_SideChaining Tutorial.pdf

Mixing with RTPC

Real Time Parameter Control (RTPC) can also be leveraged to provide dynamic
mixing opportunities using parameters from the game to drive volume changes
throughout the project. A common parameter driven mix technique is to apply a low
pass filter to the in-game environmental mix as the player’s health decreases. This
can easily be accomplished with a health game parameter used as an RTPC on one or
many audio busses.

204

http://www.audiokinetic.com/download/documents/Wwise_SideChaining_Tutorial.pdf
http://www.audiokinetic.com/download/documents/Wwise_SideChaining_Tutorial.pdf

Mastering the Mix

Remember that Danger game parameter we created in order to increase the intensity
for the horizontal music system? The same game parameter could be used to reduce
the volume of sounds or audio busses that demand less attention during combat.
Things like ambience or character movement sounds could have an RTPC curve
applied to reduce their volume in the mix and make way for the sounds of combat.

Having multiple ways to interact with the different aspects of the mix means that
when difficulties arise there will be several ways to approach a solution. Mixing with
RTPC is another effective tool in the toolbox of interactive and dynamic mixing.

205

Mastering the Mix

Using Effects in the Master-Mixer

The use of common DSP is well defined by decades of linear music and sound
production. EQ, Delay, Distortion, Compression, among others have found common
use in most Digital Audio Workstations for decades, but have only recently (within
the last 10 years) become efficient enough to use at runtime in order to affect the
mix. It’s not just the use of fixed settings that makes this area of growth so exciting,
but the dynamic and interactive nature of manipulating DSP using parameters from
the game to produce special effects that would be impossible to achieve using other
techniques.

£3 Master Audio Bus - Audio Bus Property Editor @

Motes

General Settings Effects RTPC States Advanced Settings

Mame rey., Mode

Wise Peak Limiter Brick_Wall_Minus_1dE_Peak_Fast_Release < = Use ShareSets (i}

Applying a limiter to the Master Audio Bus

Effects used at runtime will always use up CPU power, but being aware of the
different costs can help you use them more efficiently. If an effect (or effects) are
applied to only a few mono instances of a sound object, it is more efficient to apply
these at the Actor-Mixer level. If many simultaneous sounds need to be processed by
a given effect, it would be more efficient to apply the effect(s) on an audio bus that
will be mixed before applying the effect (in stereo or 5.1 depending on the speaker
configuration).

206

Mastering the Mix

Visualizing the Mixing Desk

The Mixing Desk is a flexible and powerful interface that groups a variety of
properties into one view, allowing you to fine-tune the audio mix in real time. You
can add any sound object, audio or auxiliary bus to the Mixing Desk, and then define
routing, apply effect and attenuation ShareSets, edit state properties, and modify the
properties of individual objects and busses.

After your audio and motion are integrated into the game, you can connect Wwise
to the game and profile information in real time as the game is being played.
Adjustments and mixing decisions can be made in real time in game directly from
the authoring application. Activity of each object within the Mixing Desk can also
be viewed, including when a voice is playing, if a bus is being ducked, and whether
effects are being bypassed either manually or programmatically. Each audio object
can also be muted or soloed, allowing you to adjust the individual objects within the
audio mix.

207

Mastering the Mix

&

14 Master - Mixing Desk

. Editing
SR States

Ambient
Auxiliary Send 0

Auxiliary Send Volume 0
Auxliary Send 1
Auxiliary Send Volume 1
Auxiliary Send 2
Auxiliary Send Volume 2
Auxiliary Send 3
Auxiliary Send Volume 3

i [i 0 i 0 i [} i [i [i 0 i 0
| [Objectrame [MaserAudoBus [Amet [Word Sound [Chamome Combat [macic blastfre . [Musc | Voice Non Viokd |

Visualizing the mix using the Mixing Desk view

A context menu is also available for each property setting in the mixer strip. These
menus contain a set of commands specifically related to the selected property.

For example, when you right-click one of the Effect slots (0-3), you can edit the
properties of the inserted effect, set a new effect, bypass the effect, and so on. To
access the contextual menus, simply right-click the individual property settings in
the mixer strip.

The Mixing Desk setup is saved within a Mixing Session ShareSet. This allows you to
create different mixing sessions for different components of the game. It also means
that you can set up a mixing session and then continue to fine-tune the audio mix at
a later time.

208

Mastering the Mix

Mixing Techniques for Attenuations

The use of attenuations to balance the resulting mix is one of the best contributors
to a natural sounding game. Simple things like extending the maximum distance
while changing the curve depth or shape can have a tremendous effect, allowing the
sounds to be heard from greater distance at a lesser volume. Alternately, reducing
the maximum distance can help to clean up an overactive mix and gain some clarity
between elements.

Additionally, the auxiliary send volumes of an attenuation are directly related to the
amount of signal sent to both game and user-defined busses. Ensuring the correct
balance between the output bus volume and the game/user-defined send volumes for
a sound or group of sounds can help reveal detail and definition in the mix.

[E) ambient_emitters_large_5_30 - Attenuation Editor

Name Shared by: MNotes

ambient_emitters_large_5_30

Attenuation 5

Coordinates -
Max distance

Curves Cone Attenuation Attenuation Pr
_— (Game-defin
Custom
Custom
Low-pass filte Mone
High-pass filter Mone

Adding a custom auxiliary send volumes curve to an attenuation

209

Mastering the Mix

Mix Summary

A sound designer equipped with the tools to enable a comprehensive dynamic mix
can rest easier when the time comes to complete the game’s final mix. With tools
modeled after those commonly used in the linear world, and further imbued with
the ability to react interactively, a doorway to the next level in dynamic mixing is
opened.

Throughout this chapter we have:

+ Discussed signal-flow and routing using audio busses.

+ Established the use of user-defined auxiliary sends.

+ Established the use of game-defined auxiliary sends.

+ Discussed the use of states as mix snapshots.

+ Compared auto-ducking with side-chaining.

+ Mixed with RTPC.

+ Discussed the benefits of using effects in the Master-Mixer.
+ Shown ways to visualize the mix using the Mixing Desk.

+ Illustrated techniques for mixing with attenuations.

Stepped through the process of:

+ Creating audio busses.

* Creating auxiliary busses.

+ Setting up states.

+ Applying auto-ducking to audio busses in the Master-Mixer.

Also touched on:

* The relationship between wet and dry reverb volumes in the attenuation editor.

Throughout this section we have created the following objects:

* An “Amulet” auxiliary bus used to affect magic and weapon swing sounds based
on the “Danger” game parameter.

210

Mastering the Mix

Mixing Additional Resources:
Video Tutorial - Mixing Desk
Video Tutorial - Dynamic mixing using States
Video Tutorial - Wwise Side-Chaining
Wwise Knowledge Base - Advanced settings: usage and dynamic mixing techniques
Wwise Knowledge Base - Wwise Side-Chaining Tutorial
Wwise Knowledge Base - Playback Limit and Priority: Use Case Scenarios
Wwise Knowledge Base - Using Multiple States to Affect Sounds
Wwise Knowledge base - Creating a Temporary Loss of Hearing Effect

Wwise Help > Interacting with the Game > Working with States

211

http://www.youtube.com/watch?v=tSchbUJjaHg&hd=1
http://www.youtube.com/watch?v=a77W-THkPMY&hd=1
http://www.youtube.com/watch?v=TSA-q4dzvd8&hd=1
http://kb.gowwise.com/questions/201/Advanced+settings%3A+usage+and+dynamic+mixing+techniques
http://www.audiokinetic.com/download/documents/Wwise_SideChaining_Tutorial.pdf
http://kb.gowwise.com/questions/29/Playback+Limit+and+Priority%3A+Use+Case+Scenarios
http://kb.gowwise.com/questions/22/Using+Multiple+States+to+Affect+Sounds
http://kb.gowwise.com/questions/18/Creating+a+Temporary+Loss+of+Hearing+Effect

Chapter 10. HDR Audio Wwizardry

OVEIVIEW oottt 213
Implementing HDR Audio in WWISE ..c..cecuirvierieniiriienieniteieneenieeeeeeesreeeeeeenveas 215
Setting up @ HDR AUIO MIX .eoveriiriiiiiniiiieieneeieeiesteteetesie et 216
Setting up the HDR Audio Dynamic Range Windowccccceceevervieneenenne. 216
Enabling HDR Audio in the Master-Mixer Hierarchycccocovivininininnnnenne. 218
Setting up HDR Audio Dynamics Propertiescocceeeevveeveeneeneereeneennenne 218
The Use of HDR Audio in the Actor-Mixer Hierarchyccocceevveviniininnnnnenne. 221
Enabling Envelope Trackingccccevervierieniniienieniinieneeieeiececreeee e 222
Editing a Waveform Envelopecocoeiiviiiieniininiinieiinccneneceeeeeeee 224
Enabling Source Normalizationc.cccceevuereenieniieneeneniieneeenteseeeeseennees 225
Using MaKke-Up Galll c..cooveeeerieniiiiienieiteieeeesie ettt 226
Using the Voice Monitor to Understand HDR Audiocccceceeveevieniienennienneennenne 227
Opening the Voice MONitor VIEWccceeievieriierieneniienienrenieseesieesreseenvenns 227
Auditioning Sounds in the SOUNACASLETcocvevuervierieniiierierierieeecereeiees 228
Capturing Data from WWISEcccuevuerierereneneneetetestentesiesieseseeeeeeeenees 229
HDR AUdIO SUMMATY .cuviiiiiiiiieiieiteieneceeee ettt r st sre st saeeees 231

212

HDR Audio Wwizardry

Overview

High atop the misty mountain peak, the wizened Wwizard stares out across the
battle raging across the valley. The maelstrom churns below as the loudest sounds of
cold steel-on-steel impact, blasts of magical power, and the release of catapults drift
up from the ensuing assault. As each one of these moments takes precedence, the
soundscape clears to reveal and accentuate the madness unfolding. Whether we are
conscious of it or not, a finely tuned mechanism is at work assigning relevance to the
loudness of what we hear and shaping the way we inherently experience the world
through sound. So how can the idea of prioritizing loud sounds fit with today’s
gaming?

High Dynamic Range (HDR) is a new mixing paradigm available within Wwise
to augment the already existing suite of dynamic mixing tools. HDR allows for
authoring a system that responds to the dynamic loudness of sounds by giving
priority to sounds that are authored the loudest. With this relativistic mixing
system, the clarity of intention from the authoring perspective is ensured to make
appropriate space in the mix for “important” sounds to be heard.

Think back to the scene that we just described. As the sounds of battle ensue, you
instinctively focus on the loudest sounds (combat) and quieter sounds (footsteps)
are ignored. In an HDR system, these loud sounds represent the top of a user-defined
“window” that moves dynamically to ensure that the loudest sounds are in focus. As
this window moves upward, sounds below the window bottom are removed from the
mix. When one side emerges triumphant in the battle below and eyes turn toward
the misty mountain top, the sound of horse hooves pounding the earth swell with
renewed amplitude, becoming the loudest, and most threatening focus. As the HDR
window threshold returns to its rest position, the original amplitude of the horses is
represented.

213

HDR Audio Wwizardry

| — Window top
—— Window bottom
HDR bus threshold

An illustration of the HDR window shifting in
response to increasing loudness of sounds over time.

This chapter takes you through the process of:

+ Implementing HDR Audio in Wwise.

+ Setting up an HDR Audio Mix.

+ Setting up the HDR Audio Dynamic Range Window.
+ Enabling HDR Audio in the Master-Mixer Hierarchy.
+ Setting up HDR Audio Dynamics Properties.

+ Using HDR Audio in the Actor-Mixer Hierarchy.

+ Enabling Envelope Tracking.

+ Editing a Waveform Envelope.

+ Enabling Source Normalization.

+ Using Make-up Gain.

+ Using the Voice Monitor to Understand HDR Audio.
+ Opening the Voice Monitor View.

* Auditioning Sounds in the Soundcaster.

+ Capturing Data from Wwise.

214

HDR Audio Wwizardry

Implementing HDR Audio in Wwise

HDR in Wwise can be enabled for any parent Audio Bus in the in the Master-Mixer
Hierarchy. Once enabled, the Audio Bus acts as a converter between Sound Object
volumes at the input of the HDR bus and full (device) scale at the output of the same
bus. All sounds that are routed to it are handled relative to each other within the
HDR bus, with the output of quieter sounds constantly modified according to the
properties of the system.

The controls of an HDR bus are similar to that of an audio compressor. The
properties of Threshold, Ratio, and Release Time are used to modify the behavior
of the project-specified dynamic range window. At run-time, the authored system
dynamically maps this wide range of levels to a volume range that is more suited to
your sound system's output.

In real life, the audible dynamic range, defined by the loudest possible sound and the
threshold of human hearing, is several times wider than the dynamic range offered
by speakers at game play levels. The role of the Wwise HDR system is to collapse or
"compress" this real life dynamic range into roughly 40 dB (70 dB SPL for TV/Music
listening minus 30 dB SPL for the room noise level).

The process is a sort of behavioral compression. It affects your mix by making soft
sounds inaudible as soon as loud sounds play, and then making them audible again
when the soft sounds play alone. The relative levels of sounds between one another
remain intact and add clarity to the mix by playing fewer sounds.

2 Designer Note

In prior literature, HDR audio systems are presented as having SPL values
directly assigned to each individual sound. Wwise removes the notion
of SPL, and instead focuses on relative mixing. Hence you will not find
a SPL slider anywhere in Wwise; only relative decibel values are used. If
you wish to use real-life SPL values into the system, then chose a value
that will act as a reference, and perform the necessary subtraction to find
the corresponding relative dB level. For example, you may decide that 100
dB SPL is your reference at 0 dB. Then a sound at 80 SPL should have its
volume slider set to -20 dB, and a sound at 130 dB SPL should have its
volume slider set to +30 dB.

215

HDR Audio Wwizardry

Setting up a HDR Audio Mix

In addition to working with the features available within the authoring application,
using the HDR feature allows you to place the loudest sounds front-and-center in
the mix. After you have determined the importance of various sound types you can
situate them within an evolving mix during production that places them in relative
importance to other sounds or sound types throughout the HDR system. The
resulting mix adheres to the volumes set for each sound and is constantly balanced
by the shifting dynamic range window.

The first step is defining the dynamic range (Volume Threshold) for the project.
Then, an Audio Bus is enabled for HDR processing and dynamics properties are
adjusted to fine-tune the way the window responds to signals within the system.

Each auxiliary bus includes metering and the ability to set the volume, add effects,
RTPC, and apply changes based on state.

Setting up the HDR Audio Dynamic Range Window

Getting set up for HDR in Wwise begins with setting the Volume Threshold
(window width) that encapsulates the expected dynamic range for a specific target
platform. This Volume Threshold applies to the dynamic range on the output of the
HDR system.

To begin setting up an HDR system using the provided Wwise Project Adventure, set
the Volume Threshold in the Project Settings to -50 dB:

Project Settings 2

Motion Devices External Sources Metwork Custom Properties

General Source Settings SoundBanks Logs Obstruction/Ocdusion

Active Platforms

Tip: After enabling a new
platform, you can copy
settings from another
platform in Project =
Copy Platform Settings.

Platfarm Active Volume Threshold Max Voice Instances
Windows®
¥box 360™
PlayStation®3
Wi™

MacE
VitaSW
VitaHW

Pt | Pl | (B | P

Pl

Pl

05

Setting the Volume Threshold in the Project Settings

216

HDR Audio Wwizardry

The Volume Threshold value from the Project Settings defines the difference between
the window top and window bottom. This means that when the amplitude of the
loudest sound is played back at HDR bus volume, any sounds below the Volume
Threshold (window bottom) set for the platform will either be killed or use their
virtual voice settings according to the advanced settings defined in the object
properties of each structure. When the window shifts, the dynamic range specified
for the window is maintained as it rises and falls adjusting to the loudest sound
played back at the HDR bus volume.

Visualization of a 50 dB Dynamic Range
Volume Threshold Window shifting over time.

This Volume Threshold allows sounds that are within the specified volume range to
be heard at the output. As the window moves, the volume of sounds that are playing
is modified by the value of the loudest sound. This process ensures that sounds that
are authored the loudest are heard and quieter sounds (below the window bottom)
are removed from the mix.

217

HDR Audio Wwizardry

Enabling HDR Audio in the Master-Mixer Hierarchy

HDR, which can be enabled at any parent level Audio Bus, takes into account any
sounds routed through child busses within the hierarchy. While only one bus in a
given hierarchy can be set as an HDR Audio Bus, other Audio Busses outside of an
HDR-enabled Audio Bus can be used as additional HDR busses.

£ World_Sound - Audio Bus Property Editor
MName
World_Sound
Positioning RTPC
Enable HDR.
Dynamics Window

Threshold

L
tn

Ratio

Release Time

==z smme amm
|
= =B

Release Mode Exponential

Window Top Output Game Farameter

Enabling HDR in the Master-Mixer Hierarchy

Setting up HDR Audio Dynamics Properties

Dynamics properties govern the way the HDR system reacts when sounds routed to
the HDR Audio Bus interact with each other. As sounds with different volumes are
passed through the HDR Audio Bus, their amplitude dynamically adjusts the global
volume based on familiar properties like Threshold, Ratio, and Release Time.

To test the HDR system using the Wwise Project Adventure, enable HDR on the
“World_Sound” Mix Bus and set the Threshold property to -15 dB, leaving the other
Dynamics settings at their default values.

218

HDR Audio Wwizardry

E World_Sound - Audio Bus Property Editor
MName

World_Sound

General Settings Positioning RTPC

Enable HDR.
Dynamics Window
Threshold
Ratio

Release Time

===F 3=s: assn

Release Mode

|

Window Top Output Game Farameter

Dynamics controls for an HDR enabled bus.

Threshold

The Threshold defines the minimum input level (in dB) above which the
HDR window top will engage.

Ratio

This control has a similar behavior to the ratio control in an audio
compressor. The HDR window top attenuates peaks that exceed the
threshold while reducing the volume of quieter sounds in proportion to
the ratio. For example: two sounds, one peaking at 20 dB and the other
peaking at 40 dB above threshold, come out at the same level of 0 dBES,
as long as they are not played at the same time. The difference between
the two is that the former will result in an attenuation of -20 dB to sounds
below threshold, while the latter will result in an attenuation of -40 dB.

At lower ratios, say 4, a sound peaking at +20 dB comes out at +5 dB,
while a sound peaking at +40 dB comes out at +10 dB. The attenuation
that results on sounds below threshold in these examples is -15 dB and
-30 dB respectively. Using lower ratios is therefore useful to gain back
"global" dynamic range for sounds above threshold that are otherwise

219

HDR Audio Wwizardry

taken away by the HDR system. The drawback is that sounds may peak
above threshold, so you need to keep sufficient headroom after the HDR
bus to avoid clipping. This can be done by setting the HDR bus volume to
a value lower than 0 dB (for example, -10 dB).

2 Release Time

The Release time defines the rate at which the HDR window falls
back to rest when the target is below the current value. In Linear
Mode, it is the time in seconds it takes to fall by approximately 10
decibels. In Exponential Mode, it is the time in seconds it takes to reach
approximately 0.37 (1/e) of the difference between the target and the
current value. To know which mode to choose, you need to decide which
sounds best based on your source material and game type.

220

HDR Audio Wwizardry

The Use of HDR Audio in the Actor-Mixer Hierarchy

Each Sound Object has additional HDR functionality within the Actor-Mixer
Hierarchy. From the HDR Tab in the Property Editor, special considerations can be
addressed that affect the way sounds behave when processed within the HDR system.

In the Wwise Project Adventure Actor-Mixer Hierarchy, begin by setting volume
values for groups of sounds based on the provided Work Units:

« Ambient: -20 dB

+ Character: - 10 dB
+ Combat: -5 dB

+ Magic: 15dB

3¢ magic_blast_fire_distance_blend - Blend Container Property Editor

Mame PE Notes
magic_blast_fire_distance _blend M 5

General Settings = Source Settings Effects Positioning RTPC States HOR

Voice Output Bus

= =
\.-'Elurne Low-pass filter th-pass filter
NSNS | —

Game-Defined Auxiliary Sends

Use game-defined auxiliary sends

Volume

Pitch -
[0 User-Defined Auxiliary Sends

Low-pass filter Vol

|£| - iiE Volume
HiElh-pass ilic=3 m > —
[

Setting the Volume for the “magic_blast_fire_distance_blend” Blend Container

These values represent a relativistic mix that represents magic sounds as the loudest,
followed by: combat, character, and ambient sounds in decreasing amplitude. This
simple group-based mix allows you to audition different sound types within the
HDR system to see how playback affects each of them.

221

HDR Audio Wwizardry

Enabling Envelope Tracking

From high atop the mountain, the threshold engages the HDR system as the first
magic blast resonates across the battlefield. The volume of the magic blast has been
authored as the loudest sound in the project, which swiftly engages the window

top and removes footstep sounds from the mix. Regardless of your position during
battle, the jolt of the blast signifies danger and all the sounds - nature, footsteps, and
fallen soldiers - are removed from your purview while you focus on the magnitude of
sound.

As the window top follows the magic blasts envelope, the cold sound of steel-on-steel
begins to cascade across the ravaged field of warriors. Authored below the relative
volume of a magic blast, each impact rings out with a sharp attack that continues
peaking the window top. The ratio property directly relates to the attenuation of
sounds below threshold. This leaves ambiance out of the mix as the battle cries rise
up towards another assault.

Waveform Envelope (Untracked)

Untracked waveform envelope shifting the HDR window top

When Envelope tracking is enabled, an offline analysis of the waveform automatically
calculated by Wwise is used to adjust the window top in relation to the waveform's
envelope. This can be very useful for loud sounds that drive the window top over

the Volume Threshold. Because the process of tracking the waveform envelope has

a small memory cost compared to the default envelope behavior, it is recommended
for use with loud sounds or sounds with a long envelope that changes in volume.

222

HDR Audio Wwizardry

~ Envelope Tracking

Override parent
Enable Envelope
Sensitivity

Active Range II'I

Envelope Tracking properties for Sensitivity and Active Range.

Waveform Envelope (Tracked)

Tracked waveform envelope shifting the HDR window top.

The active range defines the area of a voice from its peak (in decibels) in which the
HDR dynamics are active. This region of interest is based on its analyzed envelope:
it is "active" as long as the current envelope level is above "peak level" minus "active
level". When it is not active, the HDR dynamics ignore the content of the sound and
the release time set in the HDR bus is applied.

223

HDR Audio Wwizardry

Portion driving the window top
mmmmm HDR Release Time

Amplitude

A chart describing the relationship between the Active Range
and HDR Release Time in relation to the envelope of a sound.

Editing a Waveform Envelope

You can further adjust individual waveform envelopes from the Source Editor for
specific sound files.

Active range
of 8 dB

Editing the audio source envelope to isolate the interesting audio signal that
should be part of the 8dB active range defined the Object properties HDR tab.

The Envelope Editing Sensitivity value directly relates to the number of data-points
in the editor that are represented and tracked when Envelope Tracking is enabled.
Reducing the sensitivity reduces the level of detail that is tracked by the HDR system

at runtime. Data-points can be modified by manually modifying their position in the
Source Editor.

224

HDR Audio Wwizardry

Enabling Source Normalization

Non-destructive Source Normalization can be enabled at either the Parent or
overridden at the child level of the Actor-Mixer Hierarchy for any sound or group
of sounds. Enabling loudness normalization provides normalization of any sources
by applying an automatic gain calculated from the measured loudness of the source
recording.

¢ magic_blast_fire_distance_blend - Blend Container Property Editor

Mame PE Notes
magic_blast_fire_distance_blend M 5

.o

General Setings Source Settings Effects Positioning RTPC

Conversion Settings

Mode Use ShareSets

Source Mormalization

Enable Loudness Mormalization
Make-Up Gain

[

Enabling Loudness Normalization in the Source Setting tab of a Sound Object

To hear the results of Loudness Normalization, enable Loudness Normalization in
the Source Settings for Sound Objects contained within these Work Units:

« Ambient
+ Character
+ Combat
* Magic

Historically the practice of normalization has varied widely across different
development pipelines and audio engine methodologies. Enabling Loudness
Normalization as part of your mixing strategy gives you a reliable way to ensure that
two sounds playing at the same volume (e.g. -10 dB) will be perceived as playing at
exactly at the same level. In this way the sound content is uniformly prepared in a
way that inspires confidence during mixing.

225

HDR Audio Wwizardry

Designer Note

Loudness Normalization is applied to source files at a target value of
-23dB. Wwise analyzes the wave data, stores its loudness measurement
proportional to its RMS value, and then at run-time, applies gain to

the sound such that its loudness will be equal to -23 dB. For example, a
sound turns out to have a loudness of -35 dB; at run-time, we "normalize
it" by applying a gain of +12 dB.

Using Make-up Gain

Make-up Gain defines an amount of gain applied after the HDR processing. This
gain does not influence the HDR dynamics, in the way that adjustments made with
standard volume sliders do. Make-up Gain can be used to offset sound levels relative
to the HDR window. It can also be used to adjust loudness normalization.

magic_blast_fire_distance_blend - Blend Container Property Editor

Mame
magic_blast_fire_distance_blend

General Settings Source i Effects Positioning RTPC States

Mode Use ShareSets

Source Mormalization

Enable Loudness Mormalization
Make-Up Gain

/| S——

Using Make-Up Gain to offset volume levels for a Sound Object

The ability to control the volume of a source without affecting the HDR response is
a powerful tool that gives precise control over the mix. The abstraction of volume
values becomes a natural process as the mix is iterated during production. Once
volumes for sounds are set within the HDR system, this additional volume control
ensures that the mix can be fine-tuned without disturbing the overall composition.

226

HDR Audio Wwizardry

Using the Voice Monitor to Understand HDR Audio

Being able to see the effect of the moving window on sounds routed through the
HDR bus allows for visualization that helps to clarify the process. Using the Voice
Monitor view illustrates the window movement, the volume of sounds, and how the
envelope of the loudest sound affects the HDR system.

Opening the Voice Monitor View

Begin by opening a Voice Monitor view from the Views Menu in the Menu Bar.

B — ==
Voice Monitor 4}
Bus input Bus: | | Filter: | | . Filter

Input Volume

Opening the Voice Monitor View

To see and understand the different behaviors of HDR in action, set the monitoring
mode to either: Bus Input, Bus Output, or All voices.

Input Volume

Bus input
Bus output |

Viewing the different monitoring modes in the Voice Monitor

A HDR Bus can then be assigned to the Voice Monitor using either drag and drop or
the Project Explorer Browser.

227

HDR Audio Wwizardry

Project Explorer Voice Monitor

Audin Events SoundBarks [N | Businput Bus: [FB=

wise Object Input Volume

= @ Master-Mixer Hierarchy
= (1 Default Work Unit
= Master Audio Bus
MNon-World
World_Sound

Assigning a mix bus can be done using drag and
drop (1) or using the Project Explorer - Browser (2)

After these properties of the Monitor View have been assigned, any audio running
through the selected bus is monitored when capturing from the authoring
application or from a remotely connected game running on any development
platform.

Auditioning Sounds in the Soundcaster

In the Wwise Project Adventure, open the Soundcaster View from the Views Menu
and select the default “Soundcaster Session” from the list of sessions:

B Seirderiar

Soundcaster Session - Soundcaster

Selecting the default Soundcaster Session within the Soundcaster

The Soundcaster Session contains a set of Events that can be used to audition sounds
within the Project and additional Events can be added to further experiment with the
different categories of sound.

228

HDR Audio Wwizardry

([0 Soundcaster | [
["R Soumdemster sesson Seumdesmr L o]

> HDR Soundcaster Session Criginal ResetAl >>

Clear PF Only

Show Al States Show Al Switches Show Al RTPCs Show Al Triggers
gameplay Armor_Type ChainMail _1” Danger

Character_Type Grue _1” Distance_to_Player

Step_Type Run _I” Magic_Volume

Surface_Type Dirt 1" Time_of Day

x| B

The default Soundcaster Session included in the Wwise Project Adventure

Capturing Data from Wwise

Now that the Soundcaster is ready for auditioning sounds within the HDR system,
use Wwise to capture data from the project. To capture data in the authoring
application, click Start Capture. Use the Follow Capture Time button to follow along
with the capture time to see what happens in real-time.

H WWISE_PROJECT_ADVENTURE - Wwise
Project Edit Views Layouts Audio Windows Help
Windows® English (US) (Reference) Start Capture ' Follow Capture Time |

Selecting Start Capture and Follow Capture Time in the Voice Monitor

Once capturing has begun, any sounds passing through the selected bus are
displayed according to their current volume. Sounds can be auditioned from the
Transport, Soundcaster, or from a locally or remotely connected game running on
any development platform.

Begin auditioning by selecting the Play icon for the Play_Ambient_day_night Event.
From this point, other Events can be auditioned and their effect on the HDR window
can be seen represented in the Voice Monitor. It is worth enabling the envelope

for the magic sounds to see the difference between settings. Adjusting the HDR
Threshold or Ratio will give additional insight into how dynamic range can be
modified within the HDR system.

Here's a look at a captured sequence of Events using the Voice Monitor:

229

HDR Audio Wwizardry

Bus Input

Bus Output

Monitoring the Bus Output during a capture using the Voice Monitor

Wwise has implemented an end-to-end solution for authoring and auditioning the
HDR system, the results of which can be seen in the Voice Monitor. Being able to

test out different values offline within the authoring application and immediately
visualize their effect on the mix bring unprecedented clarity to the inner working of
the created system. This ability to not only hear the resulting mix but see how sounds
affect each other is the key to making optimal mix decisions and knowing how they
affect the final output.

230

HDR Audio Wwizardry

HDR Audio Summary

Because HDR is applied selectively to a parent bus within the Master-Mixer
hierarchy, it need not be the only technique used for dynamically mixing the game.
HDR is one of six mixing techniques within the authoring application that include:
set-volume mixing, state-based (snapshot) mixing, auto ducking, RTPC, side-
chaining, and high dynamic range mixing. Striking the right balance between
different mixing systems allows you to creatively orchestrate your interactive mix and
help solve mix-related problems, create customized mixing solutions, and address
any project needs that may arise during production.

Throughout this chapter we have:

* Described the theory behind High Dynamic Range audio within Wwise.

* Given background for the application of HDR using the Wwise Project Adventure
as an example.

» Provided an fictitious scenario which illustrates the fundamentals of HDR audio.

Stepped through the process of:

+ Setting up the HDR Audio Dynamic Range Window.

+ Enabling HDR Audio in the Master-Mixer Hierarchy.

+ Setting up the HDR Audio Dynamics Properties.

+ Enabling HDR Audio in the Actor-Mixer Hierarchy.

+ Enabling Envelope Tracking.

+ Editing a Waveform Envelope.

+ Enabling Source Normalization.

+ Using Make-up Gain

+ Using the Voice Monitor to Understand HDR Audio.

+ Capturing Data from Wwise to view HDR Audio in the Voice Monitor.

Also touched on:

* A fictitious scenario illustrating the fundamentals of HDR audio.

Throughout this section we have created the following objects:

+ The Project Settings Volume Threshold
+ Master-Mixer “World_Sound” Audio Bus

*+ Volume and Loudness Normalization for Sound Objects within the following
Work Units:

+ Ambient
+ Character
+ Combat
* Magic

231

Chapter 11. Getting Set Up for Adventure

OVEIVIEW oottt 233
Work Unit Managementceeeeuereerreeriennienernienteneesseseessesssesseesseessesseessesssessees 234
Establishing a Naming Convention Earlyc..ccccoviiiniiniinnnnniniiennes 234
Logical Grouping of WOrk Unitscccceceeveerienieneenienenineneneeeeeeseeseeseeseenne 234
Creating Work Units with Sharing in Mindcccceceevivviiiiiiiiiiiniinincnennne. 234
Grouping Objects in the Actor-Mixer Hierarchycocceeveevernienienensenecnennns 235
Setting the Audio Channel Configurationcecceeveeverviereenennieneenenseeneennenee 237
Speakers vs Headphones Panning Rulesccccoceeieniiiiinnieninninicnieienene 237
Creating Simulations with the Soundcasterc..cccceveriiiiniinininniiieenicen. 240
Project SEttINgS «...ceovveiiiiiiiiieieeteeeeeere e s 242
Project Settings - General Tabccccoveriiviniiniiiiiiccecececeeeen 242
Workgroup Plug-in Configurationceceeeeveeieneenenieenenseneeneeseeneennens 242
Audio File LOCAtIONScovvirviriiriiiiiiiiiiicicicsieesteeereee e 244
Default Conversion SEttiNgscccceeveererrerieririienienenieeneesreeeeseesresseesaeens 247
Defining the Sample Rate Automatic Detection Settingscccceevvevueenenne 247
ODbstruction/ OCCIUSIONc.ceviiiiiiiiriiiirieineeceeee e 248
Setting Obstruction and OCClUSIONcceevveriirieriienienieniericieeeeieeee e 250
L L] 510 o TP 252
Generating a Motion Source from an Existing Audio Signalccccceeueeens 253
Generating Motion Using a Motion FX Objectccccceerverieneiniennieneeneennne. 254
Customizing LayOULS ...ccc.eeecuiiiiiiiieiiiinieeeecieee ettt 256
Layout DOCKING ...coveevverieniiiiinieteeeeeeee ettt 257
VIEW DOCKING .uveriiiriiiiiiienieiteriest ettt sttt sae e 259
EXternal SOUICESccuevuivuiiiiiiiiiiiiiicicicricicecee ettt 262
SoundBanks and SoundBank Generationc..ccccceceeeeveenieneenenneneenennieneennene 263
Creating a SoundBankc..coceoiiiiiiiiiiiineeee e 263
Populating and Managing the Contents of SoundBankscccccceveevruennennes 264
Excluding Elements from a SoundBankccoceveriieniininiiniinenieneenenne. 265
A New Approach for SoundBank Managementcccoceevereeieneenieneeniennenne. 266
CONVEISION SETLINGS ..eevrerrerriierireiiieeeieeieesre et este et eseesreeseesreesneessreesneens 267
The SoundBank Definition Filec..cccceviriininiiniiiiniiniieneneeeeceeeee 267
Using the Integrity REPOTT c...ccveviiriiriiiiiiieiirieetceeeeteee et 269
Using the File PaCKageTcoviviiriiriiiiiieiieieeieeceteeeeeesee et 270
Downloadable Content (DLC)uoiiiiiiiiiiiiiiieeeeeieeeeriieeee e e e e s e ssareeees 271
Setup SUMMATY .oocviiiiiiiiiiiiicrt e 272
Setup Additional RESOUICEScc.cevveriiriiriiiiiieierieteeeeee et 273

232

Getting Set Up for Adventure

Overview

Like any well planned adventure, being prepared for the trials and tribulations you'll
face along the way starts with what you bring with you. A well thought out plan of
attack can make for smooth travel along the road to development.

This chapter will take you through the process of:

Work Unit management

Grouping objects in the Actor-Mixer hierarchy
Project settings

Workgroup settings

Audio file locations

Default conversion settings

Obstruction and Occlusion

Language Manager

Platform Selector

Customizing Layouts

Motion

SoundBank and SoundBank generation
Conversion settings

Integrity Report

Using the file packager

Preparing for downloadable content (DLC)

When building a hierarchy there are a couple of key considerations to keep in mind.

233

Getting Set Up for Adventure

Work Unit Management

Establishing a Naming Convention Early

Establishing a naming convention for work units, sound objects, and audio files can
help identify the type of asset and possibly its orientation within the project at-a-
glance. In larger projects, being able to visually distinguish different types of assets
based on naming alone can really speed up the workflow. Throughout this project
we’ve attempted to adopt a naming standard that is consistent and transparent.

Logical Grouping of Work Units

While it's easy to begin dragging and dropping .wav files directly into the Actor-
Mixer hierarchy, when planning for a larger project you and your project would
benefit from some additional thought on the matter. A simple hierarchy may consist
of a single work unit that encompasses all of the game objects. Alternately you
might choose to have a work unit for each type of sound, for example: Ambiance,
Characters, Combat, UI, Voice, etc. These work units can contain Game Objects of
any type and can be further organized within folders or actor-mixers.

Creating Work Units with Sharing in Mind

It's important to note that work units represent individual files within the Wwise
project folder. These files are readable via a text editor and contain the information,
properties, and relationships specified within the tool. Hierarchies of nested work
units can now be created in Wwise and organized in physical folders and subfolders.
If work units are present in a subfolder for a specific category (ex: Actor-Mixer
hierarchy), they will be loaded with the project. This results in a finer granularity

of files available for source control which simplifies development in a multi-user
environment.

2 Designer Note
When working with a large audio team, it is often necessary to create
enough work units to allow for a single person to work exclusively with
a given work unit for a duration of time. If you are using the integrated
Wwise Source Control solution, it is important to make sure you create a
hierarchy that will work well with the file permissions established by the
programmer.

234

Getting Set Up for Adventure

Grouping Obijects in the Actor-Mixer Hierarchy

The actor-mixer is the ultimate memory and CPU saver because some of the actor-
mixer’s properties, such as positioning and RTPCs, are shared by all of its child
objects. When considering how to organize different sound objects, think about
grouping within actor-mixers to:

+ Share property settings so they are processed only once.

+ Limit overrides to avoid processing the overrides for each object.

To optimize memory usage, consider grouping objects into actor-mixers to share the
following properties:

* Positioning
+ RTPCs
+ States

« Randomizers

Let's say you have an actor-mixer containing 10 sounds and you want to set the
sound positioning to 3D. You could set the sounds individually to 3D by using the
override parent option for each sound. However, doing it this way uses 10 times
more memory at run time than if you had set the actor-mixer positioning properties
to 3D. Now if you wanted some of the sounds to be 2D, you would still be optimizing
memory if you set the actor-mixer's positioning to 3D game-defined. In this case
you would override the actor-mixer and apply 2D to the specific sounds because 2D
sounds do not require additional memory.

235

Getting Set Up for Adventure

B Actor-Mixer
Positioning: 2D

EgSound_Ol L\-‘ "*-.___‘! - o

- Sfsound 0] | override pestioning: 30
4{& Sound_03 LW &

%g : | Runtime Memory
4L Sound_05 o

B Actor-Mixer

Positioning: 3D

EgSound_Ol L\-‘ “‘"‘"1: Override Positioning: 2D
i On Each Sound

4@ Sound_02 I_T ',
, ﬁ Sound_03 “—‘-‘ ““-..,‘I Inherits Af:iior-_Mixer
H 3D Positioning

4‘% Sound_04 b-‘ &
U L
4L Sound_05 LW ------ - Runti!::Z Hees:lﬂr\r'

Illustrating the memory saving benefits of hierarchy property inheritance

While the actor-mixer is usually your best choice, in certain situations, you can
decide to apply properties in containers to optimize memory consumption. If, you
are only applying positioning to specific objects within a container, for example,
footstep sounds in a random container, you could save memory by applying the
positioning properties to the container and not to the parent actor-mixer. If,
however, you want all the objects in the structure to share the positioning properties,
you would apply these at the actor-mixer level.

236

Getting Set Up for Adventure

Setting the Audio Channel Configuration

System Default Channel Configuration

+ From the menu bar, click Audio > System Default Channel Configuration

* By default, Wwise use the speaker setup configuration from the windows control
panel. Select this option to choose value selected in the Windows control panel.

Stereo Channel Configuration (Speakers)

+ From the menu bar, click Audio > Stereo Channel Configuration (Speakers)

+ For more information on panning rules (speakers, headphones), refer to Speakers
vs Headphones Panning Rules in the next section.

Stereo Channel Configuration (Headphones)

+ From the menu bar, click Audio > Stereo Channel Configuration (Headphones)

+ For more information on panning rules (speakers, headphones), refer to Speakers
vs Headphones Panning Rules in the next section.

5.1 Channel Configuration

+ From the menu bar, click Audio> 5.1 Channel Configuration

2 Designer Note
You can select 5.1 Channels Configuration while Windows control panel
is set to stereo. Be aware, that this might force directsound to downmix

from 5.1 to stereo.

Speakers vs Headphones Panning Rules

In Wwise there are two different panning rules: Headphones and Speakers. By
default, all platforms use the speaker panning rule with the exception of the
handheld consoles that use the headphone panning rule. The difference in between
the two modes is subtle but helps to provide a realistic and accurate audio experience
depending on your listening set-up. This setting can be auditioned in Wwise but also
can also be set in the game at run-time.

237

Getting Set Up for Adventure

Left
haadphone

Righit
haadphone

Headphone Panning Rule

=== ===

E Conler
y EREaEar

=r

T
— Sferen

<=« Witk 8.1 swrpurd envimarmment

Loudspeaker Panning Rule

To audition the two modes:

+ From the menu bar, click Audio > Stereo Channel Configuration (Speakers)

+ From the menu bar, click Audio > Stereo Channel Configuration (Headphones)

238

Getting Set Up for Adventure

2 Programmer Note
You can also set the panning rule in the game, please refer to

AK::SoundEngine::SetPanningRule in the sound engine documentation.

239

Getting Set Up for Adventure

Creating Simulations with the Soundcaster

At any point in the development process you might find it helpful to build a
simulation using the Wwise objects and events you have been working on. To
accomplish this, Wwise has created a simulation environment called the Soundcaster
where you can play back sound, music, and motion structures asynchronously. This
means you can control what plays and when. This can be very handy for testing
events, mixing in real time, and so on. The Soundcaster is a powerful tool that can be
used for:

* Prototyping and experimenting.

+ Developing a proof of concept.

+ Auditioning sounds, music, and motion simultaneously.

Since you can simulate in Wwise alone or by remotely connecting to a game, the
Soundcaster provides you with many different uses for your simulation. For any
simulation you can choose to:

+ Selectively audition the audio or motion for each platform.

* Audition pre-converted audio files.

+ Profile your audio and/or motion as it is playing back.

+ Mix and test your audio and motion in Wwise by manually simulating the game
action.

* Profile your audio and motion in game and in Wwise.

+ Experiment with the sounds, music, and motion objects associated with a game
object.

+ Mix and test your sounds, music, and motion in game.

The Soundcaster consists of three areas:
» Master controls
* Game syncs

+ Objects and events

240

Getting Set Up for Adventure

I Triggers

ChainMail _17 Danger

e Grue _I" Distance_to_Player

Run _I™ Magic_volume
Dirt. I Time_of day

Soundcaster showing the three main areas of simulation interaction

Using the different areas of the Soundcaster, you can work with its mixing and
playback functionalities when you build your simulation.

For more information on using the Soundcaster:
Wwise Help > Finishing Your Project > Creating Simulations

Video Tutorial - Wwise Quick Tip - Transport and Soundcaster

241

http://www.youtube.com/watch?v=PXT6V0dv8r4

Getting Set Up for Adventure

Project Settings

There are several aspects of the Project Settings that define the default behavior for
sound throughout the project.

Project Settings - General Tab

Through the general tab you can activate development platforms, set the volume
threshold, and set the maximum voice instances for each platform.

Project Settings]
Motion Devices External Sources Network Custom Properties
General Conversion SoundBanks Logs Obstruction/Ocdusion
Active Platforms
Active | Volume Threshold | Max Voice Instances Tip: _'“ﬁ'i"' enabling a new
963 256 pi

563 256 I
Platform Settings.

PlayStation®3 963 2
W™ 96.3 2
Mac® -36.3 2
MNGP 963

05

RE_L__ I AmeTs

Defining active platforms and managing platform settings

Volume Threshold:

The volume threshold is the default volume level below which voices are managed
by behaviors defined on the Advanced Settings tab of the Property Editor, essentially
determining the volume when voices will either be killed or sent to virtual voice.

Max Voice Instances:

This value defines the maximum number of simultaneous voices that can be active
at the same time in the entire project. Virtual voices do not count as active voices.
Over this limit, voices with the lowest priority will adopt their virtual behavior. If
priorities are equal, older sounds will be considered having a higher priority.

Workgroup Plug-in Configuration

The Workgroup plug-in allows you to specify a source control solution and specify
the settings. In your project development environment, you may already be using
a source control system, such as Perforce or Subversion, to effectively manage your
assets and other types of project files.

242

Getting Set Up for Adventure

Project Settings
Motion Devices

General Conversion

Active Platforms

Active

FlayStation®3
Wi ™

Mac®

MNGP

05

RE_L__ 0 AreTs

Workgroup

Flug-in Mo Source Control

External Sources

SoundBanks

Volume Threshold
563
963
963
963
963
963
963

e}

|

M

Metwork

Logs

ice Instances

2
2
2
2

Custom Properties

Obstruction/Ocdusion

Tip: After enabling a new
platform, you can copy
settings from ano
platform in Proj

Flatform Settings.

Specifying a source control plug-in for managing project files from Wwise

The following files within the project can be managed by a source control system:

+ Wwise project file - the .wproj file.

+ Wwise work units - the .wwu files, including the Default work units.

* Originals folder - the folder that contains the original sound files that were

imported into Wwise.

*+ Generated SoundBanks - the SoundBank files generated for each platform and

language.

Designer Note

The .cache folder located in the project directory is a local working folder

for Wwise. The contents of the .cache folder should not be added to a
source control system because it may cause unexpected behaviors in

Wwise.

Throughout the development of your game, you can view the status of your project
file (.wproj), work unit files (.wwu), and audio files in the File Manager. If you
are using Perforce, Subversion, or another Workgroup plug-in, you will be able
to perform source control functions directly in Wwise. All Wwise project files,

including the individual work units, are XML-based, which means you can use your
source control system to easily manage these files as well.

243

Getting Set Up for Adventure

Designer Note

For more information about using a Workgroup plug-in in Wwise,
refer to "Managing Project Files Using a Workgroup Plug-in" in the help
documentation.

When you are working as part of a workgroup and are using a source control system
to manage the files in your project, you should always be aware that others are
working on the same project and that there may be merge conflicts that need to

be resolved. This is why it is important to sync and merge your work often and to
communicate frequently with your team members about the work you are doing.

Designer Note

For a complete list of best practices, refer to “Workgroup Tips & Best
Practices” in the help documentation.

For more information on workgroups:
Video Tutorial - Workgroup management in Wwise using Perforce
Audio File Locations

A custom location for original and cached audio files can be set for the project as
well as an override location for the current user.

244

http://www.youtube.com/watch?v=LjD_wXQzhac&hd=1

Getting Set Up for Adventure

Motion Devices External Sources Metwork Custom Properties
General Conversion SoundBanks Logs Obstruction/Ocdusion
Platforms
Active | Volume Threshold |Ma
| 963
+ ¥box 360™ 963
FlayStation®3]
Wi ™ 563

Mac® 56.3

NGP 963
i0s 963

[T e

Warkgroup
Flug-in Mo Source Control
Criginal Audio Files
Use project’s location:
Originals
Override location for current user:

Criginals

Cached Audio Files

Override location for current user:

cache

Defining locations for original audio files used by the project

Overriding the user location can be useful in the following types of situations:

*+ You temporarily do not have access to the Originals/Cached folder.
* You do not have permission to alter the contents of the Originals/Cached folder.

* You need to create a temporary location for the Originals/Cached folder without
changing the location of the project's Originals/Cached folder.

When you import a file into the project, a copy of the original asset is stored in the
Originals project folder. Since these assets are usually shared by several people on the
team, this folder can be located anywhere on the network and can easily be managed
by a source control system.

245

Getting Set Up for Adventure

Budie files are
imparted into
Wiwisa

M
@ S]] Originaks| J
|: #] Plugins
=[] s =
m—
Legend
@ Audio

Coples of the fila: are placed
i the Originals folder

ic file . Unconverted Audio file

The asset versions created for the various game platforms are stored locally in each
user's project cache folder. This allows each user to manage their own platform
versions and to experiment with different conversion settings.

The project's cache folder contains intermediate data generated by Wwise during
audio file conversion and SoundBank generation. Its location is initially set to
".cache/' inside the project's directory when a new project is created.

Both types of files can be played back in Wwise. The original pre-converted files will
be played back whenever the Original control is activated in the Transport Control or
Soundcaster. When the Original control is not active, Wwise will attempt to play the
converted file, if one exists.

Designer Note

There are some restrictions to playing converted files in Wwise. When
you convert an audio file for a particular platform, it is converted to meet
the specific hardware requirements of that platform. As a result, you may
not be able to play back these converted files in Wwise when a platform,
other than Windows, is selected.

246

Getting Set Up for Adventure

Default Conversion Settings

Project Settings ()4

Motion Devices External

General Conversion SoundBanks

Default Conversion Settings

Sample Rate Automatic Detection
FFT window size 512
Valume Thresholds
Low gquality
Medium quality

High quality

Default conversion settings

The default conversion settings in Project Settings specifies the name of the ShareSet
that will be used as the project’s default. When a new object is created, the Default
Conversion Settings are used only if the new object is a top-level parent object. If the
new object is a child of another object, it will inherit the conversion settings assigned
to the parent.

Defining the Sample Rate Automatic Detection Settings

As part of the Project Settings, you can define the size of the Hanning window

used by the FFT algorithm as well as the threshold levels for three different quality
settings: High, Medium, and Low. These threshold settings are used when you select
Auto High, Auto Medium, or Auto Low as the sample rate conversion method.

For more information about conversion settings:

Wwise Help > Setting Up Your Projects > Working with Projects > Defining your
Project Settings > Defining the Conversion Settings for Your Project

247

Getting Set Up for Adventure

Obstruction/ Occlusion

A typical condition of most game environments is having a game object become
either obstructed by another object (such as a wall or beam), or occluded in a room
where the listener can only hear a few muffled sounds leaking through the walls.

The following diagrams illustrate examples of occlusion and obstruction.

Obstruction

Source o Listener

Legend

B Direct Path ‘

s Reflections

Example of an Obstruction

Obstruction can be modeled by applying a volume control and/or a Low Pass Filter
(LPF) affecting only the direct path of the signal. The environmental reflections are
unaffected.

248

Getting Set Up for Adventure

Occlusion

Sournce .) Listener

ey Reflections

Example of an Occlusion

Occlusion can be modeled by applying a volume control and/or a LPF affecting both
the direct path and the environmental reflections of the signal.

2 Designer Note
Obstructions and occlusions can happen simultaneously and are modeled
with the direct path being affected by both the obstruction and occlusion
value. However, the reflection path is affected by the occlusion value only.

Here is a diagram of the obstruction/occlusion processing pipeline inside the sound
engine:

249

Getting Set Up for Adventure

Obstruction
LPF & | Dry |
Yalurme Mixer
control Bus
Ceclusion
Seurce] \I';{:Eni J — L Final Mix
contral

Environmental FX
Mixer

Bus

Occlusion Processing Pipeline

Setting Obstruction and Occlusion

The game engine is responsible for determining the obstruction and occlusion
values, which it does using the position of the objects and listeners in relation to the
game's geometry.

Programmer Note

The obstruction and occlusion values for each game object affecting
each listener must be passed down to the sound engine from the game
programmatically.

In the Obstruction/Occlusion tab of the Project Settings dialog box, you can enable

and define the default volume and Low Pass Filter (LPF) curves for obstruction and
occlusion for each active platform in the project. Sound designers can also enable or
disable the usage of any curve to best suit their performance and realism needs.

250

Getting Set Up for Adventure

Motion Devices External So

General Conversion SoundBanks Logs Obstruction/Ocdusion
Windows®

Obstruction/Ocdusion

truction Volume

Obstruction LPF
Ocdusion Volume
Ocdusion LFF

rdinates

Cancel

Customizing Obstruction and Occlusion Curves in the Project Settings

Using the curve of this snapshot, setting an obstruction value of 1.0f (100%) will
produce a volume change of -50dB on the source object.

Designer Note

It is a good practice to always define curves in a linear fashion to
minimize CPU and memory usage in the project. Keep curves as simple
as possible to begin with and customize only as needed.

251

Getting Set Up for Adventure

Motion

It begins with an earth shaking rumble as the dragon emerges from an underground
lair, followed quickly by the pounding of gargantuan footsteps racing towards the
final showdown. With the expectation of a soundtrack to match the intensity of this
scenario, it seems a perfect fit for the use sound to drive controller vibration.

Wwise offers a complete pipeline for creating and integrating motion in your game.
By implementing a comprehensive pipeline solution for motion, similar to the one
that exists for building audio, Wwise allows you to:

+ Create sophisticated and realistic motion effects with a very short learning curve.

+ Integrate motion easily into a game without significantly affecting the
performance of the game or sound engine.

+ Use the same features as audio to build and integrate motion.

+ Create motion effects for the same type of device on various platforms without
additional work.

*+ Add or remove the motion component easily based on the requirements of your
game.

Before creating motion effects in the project, the types of motion devices need to be
enabled within the Project Settings in order to create motion effects.

Project Settings 71X
Motion Devices External Sources Metwork Custom Properties

General Conversion SoundBanks Logs Obstruction/Ocdusion

Check the devices supported in this project:

Controller

for a project requires the purchase
Distribution License is subij
the appropriate i ilzble at http ww audiok
For more irform , diokinet m. i you do not in

Cancel

Enabling motion devices in the Project Settings

After a motion device is enabled, you can do the following in the project:

252

Getting Set Up for Adventure

+ Create sources for Motion FX objects using media files or motion generators.
+ Include motion data for the selected device within SoundBanks.

At a very basic level, motion data is generated in Wwise from a source. This source
can either be an existing media file, a new media file, or a Motion generator plug-
in. After you have decided which motion devices will be supported by the game, you
must then decide which method you will use to generate motion.

In Wwise, there are two different methods for creating a motion source:
+ Using an existing audio signal.
+ Using a Motion FX object.

Generating a Motion Source from an Existing Audio Signal

When you convert an existing audio signal into a motion source, the audio signal is
split in two at run-time after both RTPCs and effects have been applied. The split is
done so as not to affect the original sound. Since audio has a much larger spectrum
than motion, the higher frequencies are filtered out using a low pass filter. The signal
is then re-sampled using a much lower sample rate to create the motion source.

Project Explorer magic_blast_fire_blend - Blend Container Property Editor
Audio Events SoundBarks Game Syncs ([ENEE| | Mame

magic_blast_fire_blend 5 PF

= @ Master-Mixer Hierarchy
& (M Default Work Unit
= Master Audio Bus Motion Output Bus
aster Motion Bus
motion_sound
Acto er Hierarchy
(M Default Work Unit
™ Ambient
) Character Audio to Motion Settings

General Settings Conversion Settings Effects Positioning RTPC States Motion

oo

™ Combat Motion Volume Offset
O Magic |I-| 0
2% magic_blast_fire_blend =
B | 3¢ magic_blast_fire_distance_blend Motion Low Pass
™ Motion |__|-| [i}
[u] ' e
l!] Voice

Enabling routing to a Motion Bus from an existing sound object

Designer Note

The LFE channel is ignored when generating motion from an existing
audio source.

Since the motion source is generated from an existing audio source, the motion is
tied to the audio playback in game. This means that the motion source does not
require a separate event to be triggered in game. It also means that the motion source
is affected by the same properties, behaviors, game syncs, and so on, as the audio
object.

253

Getting Set Up for Adventure

Designer Note

You can't generate a motion source from an existing audio source on the
Wii platform. To generate motion on the Wii, you have to use Motion FX
objects and the Motion Generator plug-in.

Generating Motion Using a Motion FX Object

Another way to generate motion is by creating special Wwise objects, called Motion
EX objects. These objects, like sound objects, contain a source. The motion source
can be created from a Motion Generator plug-in.

E ﬂ Signal Generator Plug-in

Motion F# Motion Source

E ﬂ Media File Plug-in

Motion Fi Motion Source

When using Motion FX objects, you can build sophisticated motion structures, using
containers and actor-mixers, to define the properties and behaviors of the motion
effects. Since these motion effects are not necessarily tied to the audio in the game,
they can be triggered at any point in game by their own events.

After enabling the use of Motion FX in the Project Settings, you can begin adding
Motion FX objects with a Motion Generator source.

M Motion
1= ump - Contents Editor - no child
vl [U]
B 0 Woice

= Add Source ==
B2 M Interactive Music Hierarchy

| Wwise Motion Generator

Adding a Motion Generator source to a Motion FX object

The Motion Generator source plug-in gives access to the authoring of motion effects
based on duration and speed, in addition to envelope properties. A default setting
can be used to define small and large curves for Motion FX, which are inherited for
all dual-motor controller types. These default settings can be overridden on a per
controller basis in order to fine-tune the motion experience.

254

Getting Set Up for Adventure

g,

Source Plugin

e Motion Generator

ettings RTPC

Coordinates

tom
Default Large ustom
0™ Small Default Small
Default Large
Default Small
Default Large

. W B LT Default Small

Motes

Period Period Multiplier |]]

Duration

Sustain Sustain level

Motion Generator source plug-in editor

Of course, there will be situations where one method will be preferential over
another. For a further discussion on the benefits of each of these methods, refer to
"Creating Motion for Your Game" in the Wwise help documentation.

For additional information about Wwise Motion:

Video Tutorial - Wwise Motion

255

http://www.youtube.com/watch?v=tUoMszXw4zo&hd=1

Getting Set Up for Adventure

Customizing Layouts

Multiple layout views are available from the menu bar to help you navigate different
aspects of the Wwise project workflow. Layouts can be modified by adding or
removing any of the views available to streamline your workflow.

Clicking and dragging on the view's title bar will transform it to a floating view and
show possible docking locations.

MY Master - Mixing Desk

Activity
Mute [Solo

E Output Bus
Is Ducking A mbient

Clicking and dragging the view's title bar in order to move it

Views can be docked on the four sides of both the layout and each individual docked
view.

256

Getting Set Up for Adventure

Layout Docking
u WW[SE_PRDJECTE! ERE - Wwise v2012.2 (64-bit)

=

=

Project Edit Views Layouts Audio Windows Help

it
E
+ Meter
. |
i
it
i
i
it
2
3
i
-
1
Low Pass Filter
7]
Volume
5

Docking locations in blue, along the border of
the layout window, turn green when hovered over

257

Getting Set Up for Adventure

Project Edit Views Layouts Audio Windows Help

Follow States ~ Copy State
Push States

Low Pass Filter

cplorer T3 Master Audio Bus - Audio Bus Property Editor k4l

Audio Events SoundBanks

‘ = @@ Master-Mixer Hierarchy

ixer Hierarchy
h Defaul
M Ambient

;
BooooeeEd

Interactive Music Hierarchy
) DEfEulEN E ntents Editor - 2 children
([Music

[+

| -
©+| Music_System - Transport Control
Event r Original

Filtered Current Selection Drph'nn PF Only

An example of the Mixing Desk view docked at the top of the layout

258

Getting Set Up for Adventure

View Docking

Docking locations on the four sides of each
docked view turn green when hovered over

259

Getting Set Up for Adventure

Project Edit Views Layouts Audio Windows Help
Follow Capture Time
Hir fs_Grue_Surface_Type - Randomizer (Volume)

sl

ch Container is st up to switch based on SurfaceType

er Plug-n

output Initial Del

ij

LEES

Interactive Music Hierarchy itch Type

[

ent
Filtered Orphan:

Filter

Play_Ambient_day_night
Play_Footstep
Play_Impact Weapon_Type
Play_magic_blast_fire_blend
Play_magic_blast_fire_distance_blend
Play_menu_pause

.
Play_menu_select

Hir fs_Grue_Surface_Type - Transport Control
Play_w you,

Play_vo_hero_goodbye Original

Play_vo_hero_goodbye |

An example of the Randomizer view docked at the top of the Property Editor view

Layouts can be selectively reverted to the default settings at any time from the
Layouts menu on the menu bar.

260

Getting Set Up for Adventure

Project Edit Views [Layouts| Audio Windows Help

Windows® v Designer F5 Follow Capture Time
Project Explorer Profiler F& lomizer (Volume)

Bl

Audio Events Sound SoundBank
Mixer
= @ Master-Mixer Schematic =5
= (N Default Worl
:E= Master

&

Interactive Music F10

Dynamic Dialogue F11
Game Object Profiler F12 Eh Container Property Editor

v Warn When Madifying Docked Layout
Reset Factory Layouts...

N
Moo Em

Designer - F5 (Current Layout)
Profiler - F&

SoundBank - F7

Mixer - F3

Schematic - F9

Interactive Music - F10

Dynamic Dialogue -F11
Game Object Profiler -F12

2t M one

Resetting the factory layout settings for the Designer layout

Customizing layouts to maximize screen real estate in a multi-monitor setup is a
great way to put the views you need in place for a streamlined workflow.

For more information about layouts:

Video Tutorial - Managing Layouts

261

http://www.youtube.com/watch?v=ueCl7IVFbks&hd=1

Getting Set Up for Adventure

External Sources

External Sources are a special type of audio source that you can put in a Sound object
in Wwise. It indicates that the real sound data will be provided at runtime. This is
very useful when managing a large amount of dialogue lines that would otherwise
need a Sound and an Event for each, which would then need to be included in
SoundBanks. It is also very useful if the dialogue lines are already managed through
another system such as an Al-driven speech generator.

Depending on how you manage the dialogue in the project, there may be additional
runtime memory savings because the External Source plug-in allows you to play
dialogue without having to load many voice assets into memory at any given time.

The External Source plug-in works as follows:

+ A Sound Voice 'template’ is created in Wwise using the External Source plug-in.
This template represents a series of audio files with common properties.

+ The External Source plug-in can take full advantage of the power and flexibility of
the project hierarchy, by placing it within containers, actor-mixers, applying states,
RTPCs, effects, and so on.

A play event is created that calls the external source.

+ The location and conversion settings of the pool of external audio assets that can
be used by the External Source plug-in are defined in the External Sources List file.
This file is a very simple XML file that contains the location of the external audio
assets that need to be converted along with the conversion settings you want to
use. The location of this file is defined in the Project Settings dialog box in Wwise.

* At runtime, the game calls the External Source and then associates the template
with one of the external audio files. The actual audio file that is played is left
entirely up to the programmer. It is important to note that the management of the
source audio files is done external to the Wwise sound engine. While this involves
more work, it also gives you more flexibility.

2 Designer Note
Most of the work related to this feature is performed by the audio
programmer within the SDK. For more information, refer the Wwise
SDK documentation.

262

Getting Set Up for Adventure

SoundBanks and SoundBank Generation

SoundBanks keep all of your audio files and information about how they are played
back bundled together in files that can be easily loaded and unloaded with the
demands of the game. Regardless of the systems employed on the game side for
managing available memory and resources, Wwise SoundBanks can be generated to
support most implementations.

’a Designer Note
A SoundBank can contain any number of events, Wwise objects, and/or
converted media files. At particular points in the game, one or more of
these project elements will be loaded into a game's platform memory in
anticipation of specific sounds or motion objects being triggered.

SoundBank creation is better handled through the SoundBank Layout (F7) that gives
you access to the SoundBank Manager and SoundBank Editor.

Creating a SoundBank

To begin with, we’ll create a new SoundBank called General. Start by selecting the
default work unit from the SoundBanks tab in the Project Explorer. This enables

you to add a new SoundBank from the Project Explorer toolbar by clicking on the
SoundBank icon. Alternately, a SoundBank can be created from the contextual menu
for a SoundBank work unit or by using shortcut keys.

Project Explorer 12X
Audio Ewvents SoundBanks Game Syncs m

5!
= # SoundBanks

= M Default Work Unit

3 [eneralll

Creating a General SoundBank

263

Getting Set Up for Adventure

Date Updated d 5 Languages

¥ Default Work Unit indows® English (L5}

& General Infinite - - - ac French (France)
German
Italian
Spanish (US)

Select Al Select None Select Al Select None Select Al Select None

SoundBank information displayed in the SoundBanks Manager

The SoundBank Manager displays the list of SoundBanks that have been created.

It also displays information about each SoundBank, including its current size,

the amount of free space left, and the type or contents of the SoundBank. Before
generating your SoundBanks, you can update them, define custom user settings, and
specify for which platforms and languages the SoundBanks will be generated.

Populating and Managing the Contents of SoundBanks

When you double-click a SoundBank in the SoundBank Manager, information
related to the selected SoundBank is automatically displayed in the SoundBank
Editor.

MName
General
Add Game Syncs Edit Details
Hierarchy Indusion Events Structures | Media
M| \Events\Ambient*
M ‘Events\Character®

M ‘Events\Combat™®
1 ‘Events\Magic®
M ‘Events\Music™
M| \Events\UI*

M ‘Events\Woice®

* : Manually added

SoundBank Editor showing manually added events

The SoundBank Editor, which is where you populate and manage the contents of
your project’s SoundBanks, is divided into four different tabs:

264

Getting Set Up for Adventure

SoundBank Editor - Add Tab - displays only the actual events, hierarchies, work
units, and folders that were added to the SoundBank. Any corresponding child
objects that are also automatically added to the SoundBank are only displayed on the
Edit tab. On the Add tab, you determine what types of information and/or media
will be included in the SoundBank per hierarchical element.

SoundBank Editor - Game Syncs Tab - displays a list of game syncs, except game
parameters and arguments, referenced by the events and sound structures that
have been included on the Add tab. On this tab, you can filter out sound structures,
events, and media files based on their relationship with a particular game sync.

SoundBank Editor - Edit Tab - displays a detailed list of each individual event,
object, and media file, including all child objects that are associated with the
hierarchical project elements on the Add tab. You can filter the list by language and
object type and then deselect any project elements that you want to exclude from the
SoundBank.

SoundBank Editor - Details Tab - displays detailed information about all aspects of
the SoundBank, including memory size, file size, SFX versus Voice size, as well as the
number of missing and replaced files, if any.

Excluding Elements from a SoundBank

Specific elements within a SoundBank can be selectively excluded by clearing the
corresponding check box.

E General - SoundBank Editor
Name

General

Add GameSyncs Edit Details

Search

Indude | Object
\Actor-Mixer Hierarchy\Character\Footstep_Character_Typelfs_Grue_Surface_Typelfs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01
\Actor-Mixer Hierarchy\Character \Footstep_Character_Typelfs_Grue_Surface_Typelfs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01%fs_grue_stone_run_01
\Actor-Mixer Hierarchy\Character \Footstep_Character_Typelfs_Grue_Surface_Typelfs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01'fs_grue_stone_run_02

\Actor-Mixer Hierarchy\Character \Footstep_Character_Typelfs_Grue_Surface_Typelfs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01'fs_grue_stone_run_03

\Actor-Mixer Hierarchy\Character \Footstep_Character_Typelfs_Grue_Surface_Typelfs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01'fs_grue_stone_run_04

Manually excluding individual sound objects from a SoundBank

Child sound objects can also be removed from the SoundBank by excluding the
parent object.

265

Getting Set Up for Adventure

-
E General - SoundBank Editor

MNotes

C Edit Details

Indude | Object
\Actor-Mixer Hierarchy\Character \Footstep_Character_Typel\fs_Grue_Surface_Type'fs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01

‘Actor-Mixer Hierarchy\Character \Footstep_Character_Type'fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01\fs_grue_stone_run_01
\Actor-Mixer Hierarchy\Character \Footstep_Character_Type'fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01\fs_grue_stone_run_02

‘Actor-Mixer Hierarchy\Character \Footstep_Character_Type'fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01\fs_grue_stone_run_03
\Actor-Mixer Hierarchy\Character \Footstep_Character_Type'\fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_run_01\fs_grue_stone_run_04
\Actor-Mixer Hierarchy\Character \Footstep_Character_Typel\fs_Grue_Surface_Type'\fs_Grue_Stone_Step_Typelfs_Grue_Stone_walk_01

‘Actor-Mixer Hierarchy\Character \Footstep_Character_Type'\fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_walk_01\fs_grue_stone_walk_01
‘Actor-Mixer Hierarchy\Character \Footstep_Character_Type'fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_walk_01\fs_grue_stone_walk_02
\Actor-Mixer Hierarchy\Character \Footstep_Character_Type'fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_walk_01\fs_grue_stone_walk_03

‘Actor-Mixer Hierarchy\Character \Footstep_Character_Type'fs_Grue_Surface_Type\fs_Grue_Stone_Step_Typelfs_Grue_Stone_walk_01\fs_grue_stone_walk_04

Manually excluding parent and child sound objects from a SoundBank

Once the SoundBanks have been populated they can be generated and used by the
game.

A New Approach for SoundBank Management

In an attempt to be as flexible as possible and to meet the requirements of almost any
type of game, Wwise has introduced a new approach for managing the SoundBanks
in your game. This new approach does not invalidate the usefulness of the original
method (explained later in this section), but simply gives you more control and
flexibility so that you can better manage the requirements of your games.

The new approach offers three major improvements over the existing traditional
method:

* You can populate your SoundBanks with not only events, but also structural
content (sounds, containers, actor-mixers, and so on), work units, and folders.

* You can determine what types of information will be included in the bank. This
means that you can populate a bank with only media, structural data, event
content, or any combination of the three. For example, you may want to create a
bank that contains only the media associated with a specific event.

* You can include or exclude specific items from a SoundBank.

The main advantage of this new approach is that it allows media content to be split
into multiple memory banks. For example, let's say the music for the entire game

is started using one single event. Using the traditional method, you would add

the event to the bank, which automatically adds all the corresponding in-memory
sounds and pre-fetched media, including the pre-fetch for the song that only plays
at the end of the game. Storing all the media in memory for the entirety of the game
seems very inefficient. Using the new approach, however, you can better manage
your memory by splitting the music media into multiple banks so that it would be
loaded only when sounds are likely to be played.

266

Getting Set Up for Adventure

By splitting the media into multiple banks, you can also prioritize the media that is
to be loaded. For example, in an environment with limited memory, you will want

to load only the most important media. Non-critical media could be stored in a
separate bank that would be loaded into memory only when there was enough room.
Previously, both critical and non-critical media files were contained in the same
bank. If the bank was too large to load into memory, none of the sounds would play,
including the critical ones.

The Wwise SDK Bank Management Samples describe the different methods that can
be used to generate and integrate the banks in your game. In a single game, you can
use one or a combination of the different methods. Since every game is different, the
method or methods you choose will depend on the specific requirements of your
game. Remember that all solutions will work, but the strategy you choose should
take into consideration the memory usage, the I/O access, and the ease of integration
in game. Each method has its advantages and drawbacks, so in most situations, it will
be a question of balance between memory usage and ease of integration.

Additional SoundBank integration details:

Wwise SDK - Windows > Sound Engine Integration Walkthrough > Integrate Wwise
Elements into Your Game > Integrating Banks > Integration Details - Banks

Conversion Settings

Conversion settings are managed as ShareSets and created based on the needs of your
project and the requirements of each active platform. Many of your choices here

can have a big impact on the performance and quality of your audio project. After
applying conversion settings ShareSets to the objects in your project, you can go back
and adjust your ShareSets at any time to achieve the best possible quality within the
constraints of the platform and the game. When you import audio files you can also
speed up the process by re-using ShareSets.

For more information about ShareSets:

Wwise Help > Finishing Your Project > Managing Platform and Language Versions
> Authoring Across Platforms > Converting Audio Files > Creating Audio
Conversion Settings ShareSets

Video Tutorial - Conversion Settings ShareSets
The SoundBank Definition File

Outside of the manual generation of SoundBanks, another method that is becoming
common is the use of the SoundBanks Definition File as a way to automatically
generate SoundBanks based on level, character, object, material or any information
from the game. A definition file can be generated automatically by external
applications, such as a game level editor, or manually by creating a tab delimited text

267

http://www.youtube.com/watch?v=Sjza1ChtCEk&hd=1

Getting Set Up for Adventure

file that lists all the events in your game, classified by SoundBank. When SoundBanks
are generated, Wwise packages all the Actor-Mixers, Containers, Sounds, and so

on that are used by the events contained within each SoundBank. If some of the
Sounds in a SoundBank are Sound Voices, then a different version of the SoundBank
is generated for each language supported by the Wwise project.

For more information on SoundBanks:
Video Tutorial - Creating and Managing SoundBanks

Video Tutorial - Building SoundBanks

268

http://www.youtube.com/watch?v=ldzQvQeWtno&hd=1
http://www.youtube.com/watch?v=VhQ_nQQT--g&hd=1

Getting Set Up for Adventure

Using the Integrity Report

The Integrity Report serves as a map to the underworld, that is, if the underworld
were populated by errors and inconsistencies instead of treasures and foes. The
Wwise Integrity Report is where a report can be generated that contains information
about the project, including errors and how to resolve them.

A view of the Integrity Report listing information,
possible errors, and information on resolution.

The Integrity Report lists errors such as:

* Missing media files

+ Missing audio or motion sources
* Plug-in problems

*+ Missing events in SoundBanks

By double-clicking an error in the Error list, you can open a corresponding Wwise
dialog box where you can resolve the error, or receive further information about how
to handle it.

You can also filter the Integrity Report to display only the types of information that
you specify, such as details about the following:

+ Platforms

+ Languages

+ Audio files and sources

 Hierarchies

+ References

+ Optimizations

Often the integrity report can highlight areas of a project that need additional
consideration or a deeper understanding.

269

Getting Set Up for Adventure

Using the File Packager

The File Packager is a stand-alone utility that groups the SoundBanks and/or
streamed media files for a Wwise project into one or more file packages to be used
for a specific platform. File packages can also help you better manage language
versions as well as downloadable content that is made available post release.

File packages can be created that include any of the following:
+ SoundBank files only

+ Streamed media files only

+ SoundBank files and streamed media files

All information about a Wwise project's SoundBanks and streamed media files
can be retrieved by importing the SoundBanksInfo.xml file into the File Packager.
The SoundBanksInfo.xml file is created automatically by Wwise each time the
SoundBanks are generated.

The File Packager can be used to create your file packages manually, or the process
can automated by using a command line to run the File Packager as part of
SoundBank generation. This command line can be defined at the project level or as a
custom SoundBank user setting.

For more information about the File Packager:
Wwise Help > Finishing Your Project > Managing File Packages
Wwise Knowledge Base - Using file packages

Wwise Knowledge Base - How do LoadBank/UnloadBank and PrepareEvent work
together?

Wwise Knowledge Base - How to avoid duplication of source files when a sound
exists in multiple SoundBanks

Video Tutorial - File Packager

270

http://kb.gowwise.com/questions/87/Using+file+packages
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://www.youtube.com/watch?v=LA5MnSNcUlw&hd=1

Getting Set Up for Adventure

Downloadable Content (DLC)

It has become a common development strategy for many games to plan for content
that will become available after a game has been released. Often, this strategy is
included in the schedule for creating a game and, if properly planned for, can be a
seamless experience for adding additional content.

One key aspect of developing content to be distributed after release is: All DLC
content must be created using the same Wwise Project that was used for the main
release. Also, to ensure compatibility, the same Wwise version must be used for the
Main and DLC releases. A basic scenario for managing DLC can be found in the
Wwise Knowledge Base and also includes considerations and limitations involved
with preparing your project.

It is important to devote time to understand the process involved with preparing
for the eventuality of downloadable content. With the right approach, the ability
to modify implementation and include additional audio can enable new creative
potential after the initial release.

For more information on Downloadable Content:

Wwise Knowledge Base - Downloadable Content Overview

271

http://kb.gowwise.com/questions/227/Downloadable+Content+Overview

Getting Set Up for Adventure

Setup Summary

While the myriad of setup options and considerations can seem overwhelming at a
glance, the ability to prepare and modify the project to meet the needs of a particular
development methodology ensures that the functionality is available. Understanding
the fundamental concepts that run throughout the project can help prepare a road
worn veteran for the task at hand. Armed with the tools to forge your own way on
the path, a limitless vista of potential awaits.

Throughout this chapter we have discussed:

+ Work Unit Management

+ Establishing a Naming Convention Early

+ Logical Grouping of Work Units

+ Creating Work Units with Sharing in Mind

+ Grouping Objects in the Actor-Mixer Hierarchy
* Creating Simulations with the Soundcaster

*+ Project Settings

+ Workgroup Plug-in Configuration

* Audio File Locations

+ Default Conversion Settings

* Defining the Sample Rate Automatic Detection Settings
* Obstruction/ Occlusion

+ Setting Obstruction and Occlusion

* Motion

+ Customizing Layouts

+ Layout Docking

+ View Docking

+ External Sources

+ SoundBanks and Bank Generation

+ A New Approach for SoundBank Management
+ Conversion Settings

*+ The SoundBank Definition File

+ Using the Integrity Report

+ Using the File Packager

« Downloadable Content (DLC)

272

Getting Set Up for Adventure

Setup Additional Resources
Video Tutorial - Workgroup Management in Wwise Using Perforce
Video Tutorial - Wwise Motion
Video Tutorial - Managing Layouts

Wwise Help > Finishing Your Project > Managing Platform and Language Versions
> Authoring Across Platforms > Converting Audio Files > Creating Audio
Conversion Settings ShareSets

Video Tutorial - Conversion Settings ShareSets

Video Tutorial - Creating and Managing SoundBanks
Video Tutorial - Building SoundBanks

Wwise Knowledge Base - Using file packages

Wwise Knowledge Base - How do LoadBank/UnloadBank and PrepareEvent work
together?

Wwise Knowledge Base - How to avoid duplication of source files when a sound
exists in multiple SoundBanks

Video Tutorial - File Packager

Wwise Knowledge Base - Downloadable Content Overview

273

http://www.youtube.com/watch?v=LjD_wXQzhac&hd=1
http://www.youtube.com/watch?v=tUoMszXw4zo&hd=1
http://www.youtube.com/watch?v=ueCl7IVFbks&hd=1
http://www.youtube.com/watch?v=Sjza1ChtCEk&hd=1
http://www.youtube.com/watch?v=ldzQvQeWtno&hd=1
http://www.youtube.com/watch?v=VhQ_nQQT--g&hd=1
http://kb.gowwise.com/questions/87/Using+file+packages
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://www.youtube.com/watch?v=LA5MnSNcUlw&hd=1
http://kb.gowwise.com/questions/227/Downloadable+Content+Overview

Chapter 12. Workflow Optimization

OVEIVIEW oottt 275
Platform Inclusion / EXCIUSIONcccoiviriinininiiiiiiiiiciciencceceeen 276
Linking / Unlinking Propertiescccoeeeeverienennienienenieneeeeieseesie e seeesveennes 277
Effects RENAEIING ...cccveviiriiiiiniiiiiienteitceeteeete ettt re e 278
Understanding the Different Types of Profiling in WWisecccccerereeurinennennnne. 279
Connecting to the GaMEcccueveiiiirieriiiieieeeeeeeeeeee e 280
Capturing Data using the Profilerccocooveveniniininiininininenenceceeee 281
Profiling Sound IN-Gamecccevuervierienernienienieeieneeseeeeetesre e 282
Instance Limiting, Prioritization, and Virtual VOicescccevevvereriiniiiieniinnennns 284
Playback LIMIES ...eecveeuierieriieniierieeieneeientesit ettt st e s st st esre et sae e s saesneenenae 285
Setting a Playback Limit per Game ODbjectccceevervieniinernenienenieeeenenne 285
Setting a Playback Limit on an Audio BUsc..cccceevieriiviniinienenicnicienene 285
Global Playback Limitccceevieriieniriiriiniiienieneceeeeeeeeseeee e 286
Setting Playback Prioritycccoceviiiiriieniiiiieneceneceeeee sttt 287
Understanding Virtual Voice Behaviorccccoceeiiiiiiiniininieniiiccceceeienene 288
Bridging the Game Engine Integration Gapc..cccceevueveeneenieneenenseeneeneeeienneenne 291
How Does SoundFrame Work?ccoceiiiiiiiiiniinininininiiciciciceeee 291
Additional Game Engine Integration Techniquescccceeveevervenivenennnennee. 292
Optimization SUMIMATY ..ccceiiuiiiiiiiieiiieee e 293
Optimization Additional RESOUICEScevuevuervieriiniiriiinienienieneeeeeeeesre e 294

274

Workflow Optimization

Overview

Regardless of the game, genre, or platform you’re working with, one concern

that persists across all developments is the need to fit within the allotted memory
and processing budget. Whether working within the tight constraints of mobile
platforms, maintaining optimal CPU usage, or making sure the most important
sounds get the memory needed for variation, the process of optimization is one
that develops organically throughout development. It can be difficult to stay on
target while the game is constantly changing, but there are some valuable resources
available that can help keep things under control.

This chapter will take you through the process of:

+ Platform Inclusion/ Exclusion

+ Linking/ Unlinking properties

+ Effects Rendering

+ Understanding the Different Types of Profiling in Wwise

+ Connecting to the Game

+ Capturing Data using the Profiler

* Profiling the Sound In-GameSample rate automatic conversion
+ Game Engine integration with SoundFrame

+ Integrity Report

275

Workflow Optimization

Platform Inclusion / Exclusion

One of the first strategies to make the trimming of sound content a testament to
sanity is the ability to include/ exclude sound objects non-destructively from one
platform to another. By simply clearing the check box next to a sound object, the

parent and any child objects are removed and excluded from the build process
depending on the platform.

For instance, removing all of the Movement Sounds from a platform with less

memory in order to keep the game within its memory budget is as easy as removing
the check from the parent sound object in the hierarchy:

Windows® | English (US) (Reference)
Windows® Ctrl+1 R;

waitie aynes - Sharesets (RN

@ Master-Mixer Hierarc Yy
= @ Actor-Mixer Hierarchy
™ Default Work Unit
™ Ambient
=\ (0 Character
- Footstep_Character_Type
= - Movement_Character_Type
= 5- Movement_Grue_Armor_Type
- fol_Grue_ChainMail_Step_Type
2| fol_Grue_Leather_Step_Type
2| fol_Grue_MetalPlate_Step_Type
i Movement_Hero_Armor_Type
i fol_Hero_ChainMail_Type
i fol_Hero_Leather_Step_Type
B [- fol_Hero_MetalPlate_Step_Type
| Combat

05 Endish US) Reference)
& Ctrl+5 | Platform Selector

Cirl+7 ame Syncs ShareSets
Ctrl+3 -.

Android™ Ctrl+0

StartC

@ Master-Mixer Hierarchy
= @ Actor-Mixer Hierarchy
™ Default Work Unit
M Ambient
= (O Character®
i Footstep_Character_Type
= e
-

Movement excluded for the iOS platform

If you’re working on multiple platforms, you can use this technique to exclude sound

objects or variations. Using the platform selector, you can work within each of your
target platforms to maintain the necessary requirements.

276

Workflow Optimization

Linking / Unlinking Properties

By default, all sound and motion properties are set the same across all active
platforms. These properties are said to be linked across platforms and can be
selectively unlinked for any property on a per platform basis. This streamlines
the creation of consistent projects across all platforms. Whether you’re unlinking
properties in order to apply different mix settings, to remove DSP effects for a
specific platform, or any other reason, having a non-destructive workflow that
enables this ability is a benefit to any multi-platform development.

Unlinking the properties of a property causes the link indicator to become orange.

Cthee
L o
Properties are linked across all Volume is unlinked and customized
active platforms. for "XBox 360” platform, and the
remaining platforms are partially
unlinked.

When defining the properties for various platforms, you can easily tell if the
properties are unlinked on another platform. The link/unlink indicator will be partly
orange indicating that it is partially unlinked.

277

Workflow Optimization

Effects Rendering

Another place where you may be able to gain back valuable resources is in the
rendering of any effects that are not actively modified by RTPC. Enabling rendering
for an effect applies the effects settings to the audio files during SoundBank
generation. While this adds to the overall size of SoundBanks, the reduction in CPU
can be beneficial when in short supply.

Effects

ID |Effect MName Prev. | Mext | Mode Render |Bypass | Edit

== 0 WwiseFlanger Flanging\Heavy_Metal < = Use ShareSets

Rendering effects

’a Designer Note
|
Rendering time-based effects that may extend the duration of the file(s),
such as delay, reverb, or time stretch, results in large files being generated
in the SoundBank which saves CPU at runtime in exchange for additional
memory usage.

278

Workflow Optimization

Understanding the Different Types of Profiling in Wwise

The Wwise profiler is at the heart of most resource centered problem solving. There
are few things related to the audio engine that you can't ascertain by connecting the
running game to the Wwise authoring application and capturing key performance
information in real time. The profiler is a consistent barometer for the state of audio
in-game and gives access to a deep level of debug opportunities.

In Wwise you can perform two types of profiling:

+ Game profiling

+ Game object profiling

Game profiling focuses on performance requirements and demands from the point
of view of the sound engine and the various components that make up the project. It
demonstrates in real time the cumulative effect the sound and motion in the project
has on platform performance, and allows you to examine the impact of individual
voices.

® Wwise - Cube®

Engine Default
nk

Tracking performance using the Game Profiler with a game currently running

279

Workflow Optimization

The Game Object Explorer is the starting point for studying game objects and
listeners. Within this view, you can see all the registered game objects in your game,
as well as control which game objects and listeners will be watched by Wwise. The
game objects that you have selected for 'watching' become visible in the Game Sync
Monitor, and both game objects and listeners show up in the Game Object 3D
Viewer.

Game object profiling also analyzes the output of the sound engine, but from the
point of view of individual game objects. Game object profiling tracks game objects
so that you can observe their movements and behavior in real time. In this way, you
can find out if certain game objects are problematic.

l (Game Object 3D Viewer

Reset Locate Object >

Tracking individual game objects in the Game Object Explorer 3D viewer

Game objects refer to discrete actors or entities that exist within a game. They are
registered or created by the audio programmer for all objects or elements within the
game that can emit a sound, such as player characters, non-player characters (NPCs),
weapons, vehicles, etc. The game object profiling tools (the Game Object Explorer,
Game Object 3D Viewer, and Game Sync Monitor) work together to examine game
objects and listeners in a game or simulation.

Connecting to the Game

To begin profiling or simulating sounds or motion fx in- game on a particular
platform, you need to first connect to the PC or game console upon which the game
runs. You can connect to any Wwise sound engine that is running and available on
your local area network.

280

Workflow Optimization

2 Designer Note
When profiling, it is recommended that you connect to the Profile build
configuration of the Wwise sound engine, even from the Debug build of
your game, because the performance of the Debug configuration has not

been optimized.

To help you find the PC or game console you are looking for, Wwise automatically
searches for all PCs and game consoles on the same subnet of the network that are
currently running a version of the Wwise sound engine. You can also connect to
consoles or PCs outside your subnet by manually entering the IP address of the
platform.

For more information on connecting to the game:

Wwise Help > Finishing Your Project > Profiling > Connecting to a Local/Remote
PC or Game Console

Capturing Data using the Profiler

After connecting to a PC or game console, you can begin to profile the audio and
motion fx in your game by capturing data directly from the sound engine. All the
information coming from the sound engine is displayed in the Capture Log.

An entry is recorded in the Capture Log for the following types of information:

+ Notifications
*+ Properties

+ Banks

« Markers

+ States

* Errors

* Events

+ Switches

* Messages

+ Actions

* Prepared Events

You can monitor each of these entries using the Performance Monitor and Advanced
Profiler. These views contain detailed information about memory, voice, and effect
usage, streaming, SoundBanks, plug-ins, and so on.

Wwise uses the following special indicators and color to help you quickly sort
through the many entries that can appear in the Capture Log. The following
illustration shows how the different indicators and colors are used in the Capture
Log.

281

Workflow Optimization

| Capture Log IE

Filter... Savelog... Filter:

Any errors are

highlighted in yellow. : Load Request Received (From Ink.brk)
? Bank Loaded {from Init.bnk)

White/gray indicators
show entries captured
within 100ms of the
Performance Monitor
time cursor.

Blue indicators show
which entries are
related to one

another. Related ki S F5_Concrete 01
entries are also 40 : vent: Tri 5_FOOTO
highlighted in teal 40 Action Triggered Play i
blue . Play FS_Concrete_03]
' 00:00:07 542 Event Triggered 5_FOOTO External Auth, .
00:00:07.542 Action Triggered Play footsteps Extetnal Auth, ..
Notification Play FS_Concrete_04 External Auth, .,
Everit Event Triggered 5_FOOTO Extetnal Auth, ..
Actlon Triggered Play footsteps External Auth, ..
Natification Play FS_Concrete_02 External Auth, .,
NatiFlcation End Reached FS_Concrete_04 External Auth, .,
Naotification Event Finished External Auth. ..
All messages are 7 Message ttpchstpos=FRONT, Sound plays in the BACK

highlighted in green. : Event Event Triggered 5_FOOTO External Auth. .,
07, Action Triggered Play footsteps External Auth

Natification Play FS_Concrete_01 External Autl
Event Event Triggered 5_FOOTO External Auth, .
Action Triggered Play footsteps Extetnal Auth. ..
Natification Play FS_Concrete_03 External Auth, ..
Natification End Reached FS_Concrete_01 External Auth. ..
Notification Event Finished External Auth, ..
Event Event Triggered 5_FOOTO External Auth, .
Action Triggered Play Extetnal Auth, ..
“ J] E I:'j on r

| | E |
Natification Play FS_Concrete_01

Capture Log showing indicator descriptions

Profiling Sound In-Game

During an epic lower level dungeon raid, the frame rate slows as a burst of sound
engulfs the player as a maelstrom of visual effects explodes onscreen. In order to
identify the role that sound may have had in the decrease in frame rate, the profiling
and game object profiling tools could be used to analyze the performance.

You can use game profiling tools to analyze the following:
+ How the many sounds associated with monsters, visual effects, and physics objects
use the platform's streaming capabilities.

+ How and when background noises such as positional ambient sound fall into
virtual voice.

+ Which effect plug-ins are applied to the different monster vocalizations and how
these affect CPU usage.

You can use game object profiling tools to analyze the following:

» How the attenuation radius of the sounds for each monster interacts with that of
each other monster.

282

Workflow Optimization

+ Where game objects such as projectile magic visual effects move relative to one
another and to the monsters.

« How an RTPC driving a side-chain affects the playback of sounds associated with
combat.

In this way, the game profiling and game object profiling tools can give you a
complete view of the game's soundscape in action.

For more information about game profiling:
Wwise Help > Finishing Your Project > Profiling

Video Tutorial - Wwise Profiler Overview

283

http://www.youtube.com/watch?v=qPB7j00KN40&hd=1

Workflow Optimization

Instance Limiting, Prioritization, and Virtual Voices

It’s not until the project has been significantly completed that the effects of instance
limiting, prioritization, and virtual voice behavior can be heard on the resulting
sounds played back during gameplay. Understanding these concerns at the outset,
and making preparations throughout development, can save the day at the end of
production when resources for implementing a fundamental change can be at a
premium.

284

Workflow Optimization

Playback Limits

To deal with limited game resources or game-design constraints, you must optimize
the sounds, music, and motion objects that are playing at any one point in the game.
This can be accomplished using two different methods:

+ Limit the number of sound, music, and/or motion instances that can be played per
game object.

+ Limit the overall number of sound, music, and/or music or motion instances that
can pass through a bus.

Setting a Playback Limit per Game Object

When either limit is reached, Wwise uses the priority setting of the object to
determine which one to stop and which one to play. If objects have equal priority,
there is the option to stop the newest or oldest instance that is playing.

When you set a playback limit at the Actor-Mixer or Interactive Music level, you
control the number of instances within the same structure that can be played, per
game object. If a child object overrides the playback limit set at the parent level, the
total number of instances that can play is equal to the sum of all limits defined within
the structure. This means that if, for example, you have a parent with a limit of 20
and a child with a limit of 10, the total possible number of instances is 30.

Parent
Limit=20 Total number of

instances of
Soundl and
Sound 2 that can
— be plaved
simultaneously
| | per garme object
is!
Soundl Soundz 10420=30
Lirnit=Parent Limit=10

Setting a Playback Limit on an Audio Bus

When you set the playback limit at the Master-Mixer level, the number of sound,
music, and/or motion instances that can pass through the bus at any one time is
specified. Since the priority of each object has already been specified at the Actor-
Mixer or Interactive Music level, there is no playback priority setting for busses.

285

Workflow Optimization

Global Playback Limit

If the new sound, music, or motion object is not killed or sent to virtual voice at the
Actor-Mixer or Interactive Music level, it passes to the second process at the Master-
Mixer level. At this level, a global playback limit is used to restrict the total number
of voices that can pass through the bus at any one time.

Managing playback limits can be done in the advanced setting of any sound object,
actor-mixer, or audio bus in the advanced settings tab of the Property Editor.

[Ambient_Background - Actor-Mixer Property Editor

Virtual Voice

Virtual voice behavior: Continue to play.

Playback Priority

Priority m 50

Offset priority by

Setting playback limits and behavior in the advanced setting tab

286

Workflow Optimization

Setting Playback Priority

Priorities define the importance given to the sound or motion object in relation to
other objects within the same actor-mixer structure. Establishing general priorities
for parent containers early on at the top level of the actor-mixer based on sound type
is a step in the right direction. Additionally, identifying critical sounds in need of

a higher priority to insure their playback is a matter of knowing the content and,
where possible, organizing it appropriately to make things easier towards the end of a
project.

Designer Note

You can also alter the playback priority based on the distance the sound
or motion object is from the listener. Wwise applies an offset to the
priority using the Max distance values defined in the Attenuation Editor.
The amount of offset applied will depend on the object's relative position
to the listener. Wwise linearly interpolates the offset between the source
point, where no offset is applied, and the attenuation max distance, where
the full offset value specified is applied.

Managing priorities can be done in the advanced setting of any sound object, actor-
mixer, or audio bus in the advanced settings tab of the Property Editor.

[Ambient_Background - Actor-Mixer Property Editor ANRIZ X

Name Notes !
Ambient_Background M s PF
ion Settings Effects Posiioning RTPC States Motion Advanced Settings

Playback Limit

Limit sound instances to [

Virtual Voice

Virtual voice behavior:

Playback Priority

Priority m 50

Offset priority by at max distance

Setting playback priority in the advanced setting tab

287

Workflow Optimization

Understanding Virtual Voice Behavior

To maintain an optimal level of performance when many sounds are playing
simultaneously, sounds below a certain volume level should not take up valuable
processing power and memory. Instead of playing these inaudible sounds, the sound
engine can queue them in the virtual voice list. Wwise continues to manage and
monitor these sounds, but once inside the virtual voice list, they are no longer
processed by the sound engine and won't take up one of the hardware's active voices.

When you select the virtual voices feature, sounds move back and forth between
the physical and the virtual voice based on their volume levels when they are

under threshold, or if their playback limit was exceeded. As the volume reaches the
threshold set by the Wwise user in Project Settings, they are added to the virtual
voice list and sound processing stops. As volume levels increase, as is the case when
sounds move within the max distance radius, the sounds will move from the virtual
voice list to the physical voice where they will be processed by the sound engine
again.

Managing virtual voice behavior can be done in the advanced setting of any sound
object, actor-mixer, or audio bus in the advanced settings tab of the Property Editor.

Notes
M s PF

sion Settings Effects Positioning RTPC States Motion |Advanced Settings
Playback Limit

Limit so

Virtual Voice

Virtual voice behavior: Continue to play.

Playback Priority

Priority m 50

Offset priority by at max distance

Setting virtual voice behavior in the advanced setting tab

There are three options to choose from when determining the move from physical to

virtual voice:

+ Continue to play - Continues playing the object as a physical voice even though it
will no longer be heard.

+ Kill voice - Stops playing the object. No fade out is applied with this option.

+ Send to virtual voice - Sends the object to the virtual voice list.

When a sound or motion object is sent to the virtual voice list, certain parameters of
the object are monitored by the sound engine, but no processing for audio or motion
occurs.

288

Workflow Optimization

When Send to Virtual Voice is set, there are three options that determine the
behavior of sounds or motion objects that move from the virtual voice list back to
the physical voice.

+ Play from beginning - Plays the object from its beginning. This option resets the
object's loop count.

+ Play from elapsed time - Continues playing the object as if it had never stopped
playing.
This option is not sample accurate, so sounds returning to the physical voice may be

out of sync with other sounds playing.

* Resume - Pauses the object when it moves from the physical voice to the virtual
voice list and then resume playback when it moves back to the physical voice.

Each behavior has its own performance characteristics, as demonstrated in the

following table:
Memory cost
Behavior CPU cost v

Low: All internal processing buffers
Play from Medium: Yoice stops being sernviced when virtual. Some extra are flushed wher?virtual g
beginning operations are done when switching between vitual and physical.)

Low: All internal processing buffers
Play from High: Voice needs to be serviced at each buffer when virtual. Some P g

are flushed when virtual.
elapsedtime extra operations are done when switching between virtual and physical.

High: All internal processing

Low: Voice stops being serviced when virtual. Mo operations ocour buffers are retained when virtual

Resume when switching.

Memory Usage

More Mermaory
Continue to play

Virtual - Resurme
Virtual - Play from elapsed time

Wirtual - Play from beginning Less Memory

GPU Usage

Mare CPU
Continue ta play

Yirkual - Play fram =lapsed time
“irtual - Play fram beginning
Yirtual - Resume Less CPU

289

Workflow Optimization

2 Designer Note
Streamed sounds stop consuming I/O bandwidth while they are virtual.

When the selected behavior is Play From Beginning or Play from Elapsed
Time, the I/O bulffer is flushed. This causes a delay before the sound is
heard again when the voices switch from virtual to physical.

In short, taking control of instances and priorities can actually change the sound of
your game. Special care and handling should be used when defining the properties at
every level of both the Actor and Master-Mixer Hierarchies. Restrictively modifying
these setting can prevent important sounds from being heard appropriately, in the
same way that ignoring the setting can result in unwelcome behavior.

For additional information on Instance Limiting, Prioritization, and Virtual Voices:
Video Tutorial - Voice Management

Wwise Knowledge Base - Tips to reduce memory usage

Wwise Knowledge Base - Playback instance limits (including global limits)

Wwise Knowledge Base - Playback Limit and Priority: Use Case Scenarios

Wwise Knowledge Base - Working with object priority and virtual voices

Wwise Knowledge Base - How does playback limit overriding work?

Wwise Knowledge Base - Virtual voices: What’s calculated and what’s not

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Managing the
Priority of Sounds and Motion > Understanding How Wwise Prioritizes Sounds
and Motion Objects

290

http://www.youtube.com/watch?v=OCKsq2NTS_E&hd=1
http://kb.gowwise.com/questions/193/Tips+to+reduce+memory+usage
http://kb.gowwise.com/questions/108/Playback+instance+limits+(including+global+limits)
http://kb.gowwise.com/questions/29/Playback+Limit+and+Priority%3A+Use+Case+Scenarios
http://kb.gowwise.com/questions/242/Working+with+object+priority+and+virtual+voices.
http://kb.gowwise.com/questions/203/How+does+playback+limit+overriding+work%3F
http://kb.gowwise.com/questions/43/Virtual+voices%3A+What%E2%80%99s+calculated+and+what%E2%80%99s+not

Workflow Optimization

Bridging the Game Engine Integration Gap

The ability to bridge functionality between game and audio engine authoring
applications is one of the most underestimated workflow improvements available to
the development team. The interaction between tools that are linked by a shared set
of information can be used to drive iteration as part of a sound designer's daily tasks.
It is here that the SoundFrame technology aims to bring a suite of solutions to help
quickly streamline communication between Wwise and other authoring applications
in an intelligent and modular way.

2 Designer Note
SoundFrame gives you access to most of the Sound Engine API. This
allows you to enable event playback as well as modify states, switches,
RTPCs, triggers, and environments in the application. This API lets
you simulate real game scenarios directly in Wwise without requiring a
working game engine or even having to generate SoundBanks.

Using the SoundFrame SDK, you can build plug-ins that can be integrated directly
into your world building application, whether it be Unity, Unreal Editor (UnrealEd),
Maya®, 3ds Max®, or any internal proprietary tool. This type of plug-in, which

is built on top of the communication framework, allows you to perform many
Wwise functions directly in your world building application, such as playing events,
triggering game sync changes, and modifying positioning properties. You will also be
able to integrate events at particular points in the animation, map switches to game
textures, visualize attenuation radiuses, and assign environmental reverb to zones,
among many other things.

How Does SoundFrame Work?

Applications and plug-ins created with the SoundFrame API work in a similar way
to the Soundcaster in Wwise. Like the Soundcaster, you can re-create a variety of
game scenarios by triggering events, sounds, and game syncs. The main difference

is that the SoundFrame application or plug-in is outside of Wwise. In order for the
two applications to communicate with each other, they both need to be installed and
running on the same machine. SoundFrame establishes a bi-directional link with
Wwise using a client-server type relationship. This type of communication allows
you to validate sophisticated game scenarios quickly and efficiently.

291

Workflow Optimization

SoundFrame Plug-in

Wwise World Builder
g': X sF- [
BIVEF | o | it

SoundFrame Application

Wwlise
Car Sim
SF - SF -
Server | - | cliant

When sounds are triggered by a SoundFrame application or plug-in, they are played
through Wwise. Since SoundFrame uses Wwise as its sound engine, it is free from
any sound engine restrictions. This means that updates can be tested and validated
live, which can save you a great deal of time at all stages of the development cycle.

By taking the simulation capabilities of the Soundcaster one step further, the amount
and types of audio simulations you can perform using SoundFrame are only limited
by your own imagination.

Additional Game Engine Integration Techniques

While the SoundFrame technology provides a framework that can allow rapid
development of toolset integration with Wwise, there are those who may wish to
approach the task of game engine integration into their own hands. The Wwise XML
Schema included with the SDK is provided as a roadmap for deeper integration
which may be necessary in the development environment.

2 Programmer Note
The XML schema for Work Units is available in the Schemas folder
in the Wwise installation (ObjectDataSchema.N.xsd - use the one
with the highest number). This schema can be used to understand the
format of Work Unit files, and it can also be used to validate the XML
file generated. Looking at the WWU files saved by Wwise with simple
projects will also allow you to see how information should be organized.

292

Workflow Optimization

Optimization Summary

Being aware of the many minute details of a Wwise project early on in development
can contribute to a positive workflow methodology. By making many small changes
over time you can avoid the common pitfalls that occur towards the end of a project.
Ideally when you reach milestones within the production that can benefit from
optimization, there has already been some thought on how best to manage limited
resources. Through a combination of understanding and conscious implementation,
the tools to realize great sound for any game are within reach.

Throughout this chapter we have discussed:

+ Platform Inclusion / Exclusion

+ Linking / Unlinking Properties

+ Effects Rendering

+ Understanding the Different Types of Profiling in Wwise
+ Connecting to the Game

+ Capturing Data using the Profiler

+ Profiling the Sound In-Game

+ Instance Limiting, Prioritization, and Virtual Voices
+ Playback Limits

+ Setting a Playback Limit Per Game Object

+ Global Playback Limit

+ Setting Playback Priority

+ Understanding Virtual Voice Behavior

+ Bridging the Game Engine Integration Gap

+ How Does SoundFrame Work?

+ Additional Game Engine Integration Techniques

293

Workflow Optimization

Optimization Additional Resources
Wwise Help > Finishing Your Project > Profiling
Video Tutorial - Wwise Profiler Overview
Video Tutorial - Voice Management
Wwise Knowledge Base - Tips to reduce memory usage
Wwise Knowledge Base - Playback instance limits (including global limits)
Wwise Knowledge Base - Playback Limit and Priority: Use Case Scenarios
Wwise Knowledge Base - Working with object priority and virtual voices
Wwise Knowledge Base - How does playback limit overriding work?
Wwise Knowledge Base - Virtual voices: What’s calculated and what’s not

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Managing the
Priority of Sounds and Motion > Understanding How Wwise Prioritizes Sounds and
Motion Objects

294

http://www.youtube.com/watch?v=qPB7j00KN40&hd=1
http://www.youtube.com/watch?v=OCKsq2NTS_E&hd=1
http://kb.gowwise.com/questions/193/Tips+to+reduce+memory+usage
http://kb.gowwise.com/questions/108/Playback+instance+limits+(including+global+limits)
http://kb.gowwise.com/questions/29/Playback+Limit+and+Priority%3A+Use+Case+Scenarios
http://kb.gowwise.com/questions/242/Working+with+object+priority+and+virtual+voices.
http://kb.gowwise.com/questions/203/How+does+playback+limit+overriding+work%3F
http://kb.gowwise.com/questions/43/Virtual+voices%3A+What%E2%80%99s+calculated+and+what%E2%80%99s+not

Chapter 13. Closing

The Real Adventure Begins

295

Closing

The Real Adventure Begins

The development path is long, winding, and littered with fallen prototypes, past
iterations, and a plethora of dead ends. As you head into battle, the best you can
hope for is a trusty weapon by your side to help defend yourself against challenges
as you progress through the forest of iteration. In game audio, you rely on the
combined power of sound design, and the magic of implementation to carry you
across the battlefield and to an eventual victory over the forces of evil; or bad sound.
Wwise is a formidable ally to have on your side during the challenging task of
development. On one hand a gleaming sword of efficiency and simplicity, on the
other, a sorcerer’s stone of possibility. Let the adventure begin!

296

Thank You

297

Thank You

Special Thanks
Audiokinetic

The production of this document could not have been possible without vast expertise of
the Audiokinetic team, especially Simon Ashby and Etienne Caron who were instrumental
in validating the terminology and consistency of intent throughout the development of the
documentation. Additionally, the final document presentation relied heavily on the capable
technical wizardry of Bernard Rodrigue.

Editor

Judy Lapalme moved swiftly and effortlessly to correct errant punctuation and help streamline
clunky sentence structure.

Project Content

All content was created exclusively for use in the accompanying Wwise Project Adventure by Bay
Area Sound: Julian Kwasneski (Sound Design) & Jared Emerson-Johnson (Composer).

Continuity Experts (Beta Testers)

Hrishikesh Dani, Luca Fusi, Jack Menhorn, Roel Sanchez, Michael Taylor, and Rob Bridgett.

298

About the Author

299

About the Author

Damian Kastbauer

Damian Kastbauer is a freelance Technical Sound Designer working to help bridge the gap
between noise makers and game developers. Utilizing the functionality of game audio specific
implementation authoring applications, his goal is to create dynamic sound interactions that
leverage interactive techniques to make good sound content sound great.

He lives in Minneapolis, Minnesota with his sharp-witted and beautiful wife, two glorious
daughters, a big hairy dog, and a freaky cat. When not dreaming and talking about ways to bring
the beauty of interactive audio to the people, he can be found: spending time with his family,
building things with his hands, and making weird noises for fun with effect-pedals.

He can be reached at: damian@lostchocolatelab.com.

Q: Is it: "Lost Chocolate LAB" or "Lost CHOCOLATE Lab"?
A: Tt depends on how you look at it. I've never lost a Labrador and I don't remember ever having
a Laboratory...

Q: You live in Minneapolis, how does that work?
A: A combination of remote source-control enabled work from the home studio with occasional
time on-site working directly with developers.

Q: What is the future of game audio?
A: Everyone working together to increase the use of interactive audio to create unique and
engaging experiences.

300

	The Wwise Project Adventure
	Table of Contents
	The Adventure Begins
	Chapter 1. Setting the Ambient Stage
	Overview
	Building the Foundation
	Importing Audio Files
	Setting Up a Looping Sound
	Adding Detail to a Developing Soundscape
	Randomizing Properties
	Using the Blend Container to Combine Sounds
	Weighted Randomization Using the Silence Plug-in
	Randomized Positioning of Sounds
	Creating the Combined Daytime Forest Ambient Combination

	Section Summary

	Introduction of a Day and Night Cycle
	Establishing a Game Parameter
	Creating the Ambient System
	Using the Blend Track Editor
	Setting Container Order within Blend Tracks
	Preparing the Event
	Harnessing Event Actions
	Creating Work Units
	Section Summary

	Sound Emitters in the Game World
	Creating Attenuation ShareSets
	Creating and Establishing Generalized Attenuations
	Subscribing Sound Objects to an Attenuation
	Using Spread as Part of an Attenuation
	Using Low Pass Filter as Part of an Attenuation
	Adjusting Cone Attenuation Properties
	Section Summary

	SoundSeed Air -Wind
	SoundSeed Wind - Deflectors
	SoundSeed Wind - Properties
	SoundSeed Wind - RTPC

	Ambient Summary
	Ambient Additional Resources

	Chapter 2. Establishing Character
	Overview
	Footsteps and Movement - Establishing Needs
	Simple Steps

	Switching System Introduction
	Defining Step Type
	Defining Surface Type
	Defining Character Type
	All Together Now

	Movement
	Defining Armor Type
	Creating the Movement Event

	Character Summary
	Character Additional Resources

	Chapter 3. Preparing for Combat
	Overview
	Defining Sound Sets for Weapon Types
	SoundSeed Air - Whoosh
	Understanding Impact
	Defining Weapon Type
	Weapon Impact System

	Attenuations for Player vs. NPC
	High Alert
	Listener Considerations

	Combat Summary
	Combat Additional Resources

	Chapter 4. Making Magic
	Overview
	Summing and Layering with Blend Containers
	Creating Distance-Based Blend Tracks
	Setting up a Game Parameter
	Crossfading Between Containers on a Blend Track
	Section Summary

	Real-Time Parameter Control (RTPC)
	Using Real-Time Effects
	Unleashing Dynamic Synthesis
	Wwise Synth One
	Modulators
	Modulator LFO
	Modulation Envelope

	Magic Summary
	Magic Additional Resources

	Chapter 5. Dialogue Decisions and Language Lessons
	Overview
	Getting Started with Dialogue and Non-Verbal Vocalizations
	Adding Additional Languages
	Dynamic Dialogue
	Cinematic Dialogue Placement
	Voice Summary
	Voice Additional Resources

	Chapter 6. Unlocking the User Interface
	Overview
	Creating a Simple Menu Select Sound
	Defining 2D Sound Positioning
	The Complex Negotiation of Pause
	Pause - Defining the Scenario
	Pausing the Game
	Resuming the Game

	User Interface Summary
	User Interface Additional Resources

	Chapter 7. Adventures in Music
	Overview
	Starting With the Interactive Music Hierarchy
	Preparing the Content

	The Horizontal Approach
	Creating the Ambient Music Segment
	Grooming the Tracks
	Dynamic Danger
	Adding RTPC to Tracks
	Auditioning RTPC
	Looping a Music Segment
	Section Summary

	The Vertical Approach
	Groups and Behaviors
	Sequencing Groups in the Music Playlist Editor
	Section Summary

	Using States to Switch Between Music Types
	Defining Interactive Music Transitions
	Authoring Transitions
	Defining Transition Behavior
	Transitioning from Ambient to Action Music
	Transitioning from Action to Ambient Music
	Section Summary

	Music Summary
	Music Additional Resources

	Chapter 8. Adventures in MIDI
	Overview
	Importing MIDI Files
	Section Summary

	Setting up Wwise Synth One
	Adventures in Synthesis
	Section Summary

	Connecting MIDI & Sound
	Importing the Individual MIDI Tracks
	Music Segment MIDI Properties
	Sound Object MIDI Properties
	Section Summary

	MIDI Summary
	Music Additional Resources

	Chapter 9. Mastering the Mix
	Overview
	Routing with Audio Busses
	Routing with Auxiliary Busses
	Using Auxiliary Sends
	User-Defined Auxiliary Sends
	Game-Defined Auxiliary Sends

	States and Mix Snapshots
	Auto-Ducking vs. Side-Chaining
	Auto-Ducking
	Side-Chaining
	Mixing with RTPC

	Using Effects in the Master-Mixer
	Visualizing the Mixing Desk
	Mixing Techniques for Attenuations
	Mix Summary
	Mixing Additional Resources:

	Chapter 10. HDR Audio Wwizardry
	Overview
	Implementing HDR Audio in Wwise
	Setting up a HDR Audio Mix
	Setting up the HDR Audio Dynamic Range Window

	Enabling HDR Audio in the Master-Mixer Hierarchy
	Setting up HDR Audio Dynamics Properties

	The Use of HDR Audio in the Actor-Mixer Hierarchy
	Enabling Envelope Tracking
	Editing a Waveform Envelope
	Enabling Source Normalization
	Using Make-up Gain

	Using the Voice Monitor to Understand HDR Audio
	Opening the Voice Monitor View
	Auditioning Sounds in the Soundcaster
	Capturing Data from Wwise

	HDR Audio Summary

	Chapter 11. Getting Set Up for Adventure
	Overview
	Work Unit Management
	Establishing a Naming Convention Early
	Logical Grouping of Work Units
	Creating Work Units with Sharing in Mind

	Grouping Objects in the Actor-Mixer Hierarchy
	Setting the Audio Channel Configuration
	Speakers vs Headphones Panning Rules

	Creating Simulations with the Soundcaster
	Project Settings
	Project Settings - General Tab
	Workgroup Plug-in Configuration
	Audio File Locations
	Default Conversion Settings
	Defining the Sample Rate Automatic Detection Settings

	Obstruction/ Occlusion
	Setting Obstruction and Occlusion

	Motion
	Generating a Motion Source from an Existing Audio Signal
	Generating Motion Using a Motion FX Object

	Customizing Layouts
	Layout Docking
	View Docking

	External Sources
	SoundBanks and SoundBank Generation
	Creating a SoundBank
	Populating and Managing the Contents of SoundBanks
	Excluding Elements from a SoundBank
	A New Approach for SoundBank Management
	Conversion Settings
	The SoundBank Definition File

	Using the Integrity Report
	Using the File Packager
	Downloadable Content (DLC)
	Setup Summary
	Setup Additional Resources

	Chapter 12. Workflow Optimization
	Overview
	Platform Inclusion / Exclusion
	Linking / Unlinking Properties
	Effects Rendering
	Understanding the Different Types of Profiling in Wwise
	Connecting to the Game
	Capturing Data using the Profiler
	Profiling Sound In-Game

	Instance Limiting, Prioritization, and Virtual Voices
	Playback Limits
	Setting a Playback Limit per Game Object
	Setting a Playback Limit on an Audio Bus
	Global Playback Limit

	Setting Playback Priority
	Understanding Virtual Voice Behavior
	Bridging the Game Engine Integration Gap
	How Does SoundFrame Work?
	Additional Game Engine Integration Techniques

	Optimization Summary
	Optimization Additional Resources

	Chapter 13. Closing
	The Real Adventure Begins

	Special Thanks
	Damian Kastbauer

