
The Wwise Project
Adventure
A�Handbook�for�Creating�Interactive�Audio�Using
Wwise

Damian Kastbauer

2014.1.1

The Wwise Project Adventure

2

The Wwise Project Adventure
A�Handbook�for�Creating�Interactive�Audio�Using�Wwise

Damian Kastbauer

Wwise 2014.1.1 Build 5179

Copyright © 2014 Audiokinetic, Inc. All rights reserved.

Patents pending

Wwise is a product of Audiokinetic, Inc..

This document is supplied as a guide for the Wwise® product. This guide and the software that it describes is furnished under license and may not

be duplicated, reproduced, modified, stored or transmitted, in whole or in part, in any form or by any means, other than as expressly permitted

by the terms of such license or with the prior written permission of Audiokinetic, Inc.. The content of this guide is furnished for information

purposes only, and its content and all features and specifications referred to therein are subject to change without notice. Reasonable care has

been taken in preparing the information contained in this document, however, Audiokinetic, Inc.. disclaims all representations, warranties and

conditions, whether express, implied or arising out of usage of trade or course of dealing, concerning this guide and assumes no responsibility or

liability for any losses or damages of any kind arising out of the use of this guide or of any error or inaccuracy it may contain, even if Audiokinetic,

Inc.. has been advised of the possibility of such loss or damage. This guide is protected by Canadian copyright law and in other jurisdictions by

virtue of international copyright treaties.

Wwise® is a registered trade-mark of Audiokinetic, Inc.. Actor-mixer, Master-Mixer, SoundFrame, Soundcaster, Randomizer are all trademarks of

Audiokinetic, Inc.. All other trademarks, trade names or company names referenced herein are the property of their respective owners.

iii

Table of Contents

The Adventure Begins .. ix

1. Setting the Ambient Stage ... 1

Overview .. 2

Building the Foundation .. 3

Importing Audio Files .. 3

Setting Up a Looping Sound .. 6

Adding Detail to a Developing Soundscape .. 11

Randomizing Properties ... 11

Using the Blend Container to Combine Sounds 13

Weighted Randomization Using the Silence Plug-in 13

Randomized Positioning of Sounds ... 15

Creating the Combined Daytime Forest Ambient Combination

.. 18

Section Summary ... 18

Introduction of a Day and Night Cycle .. 19

Establishing a Game Parameter .. 19

Creating the Ambient System ... 20

Using the Blend Track Editor ... 20

Setting Container Order within Blend Tracks .. 23

Preparing the Event .. 25

Harnessing Event Actions ... 26

Creating Work Units .. 29

Section Summary .. 34

Sound Emitters in the Game World ... 35

Creating Attenuation ShareSets ... 35

Creating and Establishing Generalized Attenuations 36

Subscribing Sound Objects to an Attenuation .. 37

Using Spread as Part of an Attenuation ... 38

Using Low Pass Filter as Part of an Attenuation 41

Adjusting Cone Attenuation Properties ... 42

Section Summary ... 43

SoundSeed Air -Wind .. 44

SoundSeed Wind - Deflectors .. 46

SoundSeed Wind - Properties .. 47

SoundSeed Wind - RTPC ... 49

Ambient Summary ... 50

Ambient Additional Resources ... 51

2. Establishing Character ... 52

Overview .. 53

Footsteps and Movement - Establishing Needs ... 54

Simple Steps .. 54

Switching System Introduction ... 56

The Wwise Project Adventure

iv

Defining Step Type .. 57

Defining Surface Type ... 60

Defining Character Type ... 62

All Together Now .. 63

Movement .. 64

Defining Armor Type .. 64

Creating the Movement Event ... 65

Character Summary .. 67

Character Additional Resources .. 69

3. Preparing for Combat ... 70

Overview .. 71

Defining Sound Sets for Weapon Types .. 72

SoundSeed Air - Whoosh .. 73

Understanding Impact ... 78

Defining Weapon Type .. 78

Weapon Impact System ... 79

Attenuations for Player vs. NPC ... 81

High Alert .. 81

Listener Considerations ... 81

Combat Summary ... 83

Combat Additional Resources ... 84

4. Making Magic .. 85

Overview .. 86

Summing and Layering with Blend Containers .. 87

Creating Distance-Based Blend Tracks .. 88

Setting up a Game Parameter ... 88

Crossfading Between Containers on a Blend Track 91

Section Summary .. 92

Real-Time Parameter Control (RTPC) .. 93

Using Real-Time Effects .. 95

Unleashing Dynamic Synthesis ... 99

Wwise Synth One .. 99

Modulators .. 103

Modulator LFO .. 103

Modulation Envelope .. 108

Magic Summary .. 114

Magic Additional Resources .. 115

5. Dialogue Decisions and Language Lessons .. 116

Overview .. 117

Getting Started with Dialogue and Non-Verbal Vocalizations 118

Adding Additional Languages ... 122

Dynamic Dialogue ... 124

Cinematic Dialogue Placement ... 126

Voice Summary .. 128

Voice Additional Resources ... 129

The Wwise Project Adventure

v

6. Unlocking the User Interface ... 130

Overview .. 131

Creating a Simple Menu Select Sound .. 132

Defining 2D Sound Positioning .. 134

The Complex Negotiation of Pause ... 135

Pause - Defining the Scenario ... 135

Pausing the Game .. 136

Resuming the Game .. 137

User Interface Summary .. 139

User Interface Additional Resources .. 140

7. Adventures in Music .. 141

Overview .. 142

Starting With the Interactive Music Hierarchy .. 143

Preparing the Content ... 143

The Horizontal Approach ... 144

Creating the Ambient Music Segment ... 144

Grooming the Tracks ... 147

Dynamic Danger ... 149

Adding RTPC to Tracks ... 149

Auditioning RTPC ... 151

Looping a Music Segment ... 152

Section Summary .. 152

The Vertical Approach ... 153

Groups and Behaviors ... 153

Sequencing Groups in the Music Playlist Editor 154

Section Summary .. 156

Using States to Switch Between Music Types .. 157

Defining Interactive Music Transitions ... 159

Authoring Transitions .. 160

Defining Transition Behavior .. 160

Transitioning from Ambient to Action Music 161

Transitioning from Action to Ambient Music 163

Section Summary .. 165

Music Summary .. 166

Music Additional Resources .. 168

8. Adventures in MIDI .. 169

Overview .. 170

Importing MIDI Files .. 171

Section Summary .. 175

Setting up Wwise Synth One .. 176

Adventures in Synthesis ... 177

Section Summary .. 180

Connecting MIDI & Sound ... 181

Importing the Individual MIDI Tracks ... 181

Music Segment MIDI Properties ... 183

The Wwise Project Adventure

vi

Sound Object MIDI Properties ... 184

Section Summary .. 187

MIDI Summary ... 188

Music Additional Resources .. 189

9. Mastering the Mix ... 190

Overview .. 191

Routing with Audio Busses ... 192

Routing with Auxiliary Busses ... 194

Using Auxiliary Sends .. 196

User-Defined Auxiliary Sends .. 197

Game-Defined Auxiliary Sends ... 199

States and Mix Snapshots .. 201

Auto-Ducking vs. Side-Chaining ... 203

Auto-Ducking .. 203

Side-Chaining .. 204

Mixing with RTPC .. 204

Using Effects in the Master-Mixer ... 206

Visualizing the Mixing Desk ... 207

Mixing Techniques for Attenuations ... 209

Mix Summary .. 210

Mixing Additional Resources: .. 211

10. HDR Audio Wwizardry ... 212

Overview .. 213

Implementing HDR Audio in Wwise .. 215

Setting up a HDR Audio Mix ... 216

Setting up the HDR Audio Dynamic Range Window 216

Enabling HDR Audio in the Master-Mixer Hierarchy 218

Setting up HDR Audio Dynamics Properties .. 218

The Use of HDR Audio in the Actor-Mixer Hierarchy 221

Enabling Envelope Tracking .. 222

Editing a Waveform Envelope ... 224

Enabling Source Normalization .. 225

Using Make-up Gain ... 226

Using the Voice Monitor to Understand HDR Audio 227

Opening the Voice Monitor View .. 227

Auditioning Sounds in the Soundcaster .. 228

Capturing Data from Wwise ... 229

HDR Audio Summary ... 231

11. Getting Set Up for Adventure .. 232

Overview .. 233

Work Unit Management .. 234

Establishing a Naming Convention Early .. 234

Logical Grouping of Work Units ... 234

Creating Work Units with Sharing in Mind .. 234

Grouping Objects in the Actor-Mixer Hierarchy ... 235

The Wwise Project Adventure

vii

Setting the Audio Channel Configuration ... 237

Speakers vs Headphones Panning Rules .. 237

Creating Simulations with the Soundcaster .. 240

Project Settings .. 242

Project Settings - General Tab ... 242

Workgroup Plug-in Configuration .. 242

Audio File Locations .. 244

Default Conversion Settings .. 247

Defining the Sample Rate Automatic Detection Settings 247

Obstruction/ Occlusion ... 248

Setting Obstruction and Occlusion ... 250

Motion ... 252

Generating a Motion Source from an Existing Audio Signal 253

Generating Motion Using a Motion FX Object 254

Customizing Layouts ... 256

Layout Docking ... 257

View Docking .. 259

External Sources .. 262

SoundBanks and SoundBank Generation ... 263

Creating a SoundBank ... 263

Populating and Managing the Contents of SoundBanks 264

Excluding Elements from a SoundBank .. 265

A New Approach for SoundBank Management 266

Conversion Settings ... 267

The SoundBank Definition File ... 267

Using the Integrity Report .. 269

Using the File Packager ... 270

Downloadable Content (DLC) .. 271

Setup Summary ... 272

Setup Additional Resources ... 273

12. Workflow Optimization ... 274

Overview .. 275

Platform Inclusion / Exclusion .. 276

Linking / Unlinking Properties .. 277

Effects Rendering ... 278

Understanding the Different Types of Profiling in Wwise 279

Connecting to the Game ... 280

Capturing Data using the Profiler ... 281

Profiling Sound In-Game .. 282

Instance Limiting, Prioritization, and Virtual Voices 284

Playback Limits .. 285

Setting a Playback Limit per Game Object .. 285

Setting a Playback Limit on an Audio Bus .. 285

Global Playback Limit ... 286

Setting Playback Priority ... 287

The Wwise Project Adventure

viii

Understanding Virtual Voice Behavior .. 288

Bridging the Game Engine Integration Gap .. 291

How Does SoundFrame Work? ... 291

Additional Game Engine Integration Techniques 292

Optimization Summary ... 293

Optimization Additional Resources .. 294

13. Closing ... 295

The Real Adventure Begins ... 296

ix

The Adventure Begins

While interactive audio continues to scale in complexity, certain implementation and

workflow fundamentals remain the same. The Wwise sound engine and authoring

application has been built from the ground up to support current and next gen audio

integration in a flexible and dynamic productivity pipeline.

Building on the concepts explained in Wwise Fundamentals, the Wwise Project

Adventure shows how to implement interactive and dynamic audio for a fictional

game project. This comprehensive overview covers the process from start to finish,

and the companion Wwise project allows you to take a hands-on approach to

investigating the techniques. Whether you take a hands-on approach with the

tutorial, or simply follow along in the accompanying project is up to you.

This book is intended for readers with some experience with digital audio in

addition to basic experience with audio for games. Links to additional information

to extend your knowledge into different areas of implementation are provided

throughout this document. It does not replace the user documentation, but instead

provides a way to access the details through specific examples and illustrations of

techniques using the Wwise authoring application.

Our case study is a fantasy adventure game set deep in a forest, with danger lurking

at every turn. An occasional dungeon gives the hero an opportunity to purge the

scourge that lies within its darkened corridors. Armed with a trusty sword and the

steadfast courage to persevere, the hero follows the path to riches that lie just ahead

on the horizon.

Welcome to the Wwise Project Adventure!

1

Chapter 1. Setting the Ambient Stage

Overview .. 2

Building the Foundation .. 3

Importing Audio Files .. 3

Setting Up a Looping Sound ... 6

Adding Detail to a Developing Soundscape .. 11

Randomizing Properties ... 11

Using the Blend Container to Combine Sounds 13

Weighted Randomization Using the Silence Plug-in 13

Randomized Positioning of Sounds ... 15

Creating the Combined Daytime Forest Ambient Combination 18

Section Summary ... 18

Introduction of a Day and Night Cycle ... 19

Establishing a Game Parameter .. 19

Creating the Ambient System .. 20

Using the Blend Track Editor ... 20

Setting Container Order within Blend Tracks .. 23

Preparing the Event .. 25

Harnessing Event Actions .. 26

Creating Work Units .. 29

Section Summary .. 34

Sound Emitters in the Game World .. 35

Creating Attenuation ShareSets ... 35

Creating and Establishing Generalized Attenuations 36

Subscribing Sound Objects to an Attenuation .. 37

Using Spread as Part of an Attenuation ... 38

Using Low Pass Filter as Part of an Attenuation .. 41

Adjusting Cone Attenuation Properties ... 42

Section Summary ... 43

SoundSeed Air -Wind .. 44

SoundSeed Wind - Deflectors .. 46

SoundSeed Wind - Properties .. 47

SoundSeed Wind - RTPC .. 49

Ambient Summary ... 50

Ambient Additional Resources ... 51

Setting the Ambient Stage

2

Overview

The stage is set before a single piece of geometry has been placed. The goal is simple:

create a lush and non-repetitive ambient background to support hours of travel

through the deep forest that lies ahead.

This chapter will take you through the process of:

• Importing audio files.

• Setting up a looping background ambient audio source.

• Randomizing playback of background ambient elements.

• Randomizing the 3D position of elements.

• Applying real-time parameter control to blend containers using Crossfade.

• Using sound emitters as part of ambient design.

• Creating attenuation ShareSets.

• Subscribing attenuations to game objects.

• Using SoundSeed Air - Wind.

• Master-Mixer hierarchy organization.

Setting the Ambient Stage

3

Building the Foundation

Importing Audio Files

We’ll begin by importing a single audio file into a new Wwise project with the

intention of using it as a looping ambient background. There are a few things to keep

in mind about the process of bringing content into the project.

At a very basic level, Wwise distinguishes between the following two types of assets:

• Original assets imported into Wwise.

• Versions of these assets created for the various game platforms.

Wwise stores these two types of assets in different locations within the project

folder, so they can be managed independently. Any imported assets are stored in the

Originals project folder by default. Since these assets are usually shared by several

people on your team, this folder can be located anywhere on your network and can

easily be managed by your source control system.

The import process includes the following operations:

• The original media (WAV) files are validated by Wwise before being copied into

the project's Originals folder.

• Audio sources are created for the media files.

• Sound or music objects that contain audio sources are created in Wwise and are

displayed in their respective hierarchies on the Audio tab of the Project Explorer.

Importing files into the Actor-Mixer hierarchy using the Audio File Importer allows

you to import individual files or groups of files by folder. You can import through

the Project menu, or by right-clicking the work unit or container where you want the

audio files.

Setting the Ambient Stage

4

Importing audio files from the Project menu

The Audio File Importer showing a single file to be imported as a Sound SFX

Alternately you can drag and drop audio files from folders directly into the Wwise

hierarchy.

In the following example we’ll import an ambient sound file for use as the basis

of our ambient sound system. This file used can be found in the project folder: /

Originals/SFX/Ambient_Background/ambient_forest_day_background_loop.wav.

Imported sound file

Setting the Ambient Stage

5

Designer Note

Sound, music, or motion fx objects associated with sources that are

not converted for the current platform appear blue in the Audio tab of

the Project Explorer. Once a sound source has been converted to the

target platform format, the text appears white. If a sound object has been

created with no valid source, the text will appear red.

The imported file is added to a sound object, which includes a reference to the

imported media file(s). When you load a sound object into the Property Editor, its

sources are displayed in the Contents Editor.

Sound SFX object showing the source audio file location

Designer Note

A sound object can contain multiple sources including alternate versions,

silence, plug-ins and different language versions for localization.

A sound object can be auditioned by using the Transport Control. After double-

clicking the ambient_forest_day_background_loop sound object, click the play icon

to play the object loaded in the Transport Control. Alternately, pressing the spacebar

plays and stops the sound object.

Transport Control showing the play icon

Setting the Ambient Stage

6

Setting Up a Looping Sound

Now that a background forest day ambience audio file has been added to the project,

it needs to be set to loop for it to continue playing. You have the option to loop the

sound or motion fx object indefinitely, or to specify the number of times it will be

looped.

Looping properties of a Sound SFX

By default, double-clicking an object displays the object’s properties. This action

changes the focus of the Sound Property Editor to the object that was selected.

Looping Multiple Sound Files

While playing a single sound file with no audible loop point continues to be a

relevant technique, it has become equally common practice to assemble a loop

through the randomized combination of individual sound files. For example,

instead of playing back a single two minute sound file, you could instead choose to

randomize the playback of four 30 second files.

Moving forward with this approach for the night forest ambient background, we'll

start with a single ambient sound file that has been edited into four smaller files.

These files will then be imported and parented within a random container. By

randomizing the order in which these four files are played back, the eventual loop

composition will be created differently each time.

Start first by importing the four individual files, either using the audio file importer

(as shown above) or by dragging and dropping them into the default work unit from

their source folder.

Setting the Ambient Stage

7

Multiple sound files imported

To accommodate the complex nature of audio within a game, different types of

objects can exist within the Wwise project hierarchy. You can use a combination of

the following object types to group your assets and build a structure for your project.

• Sound objects

• Motion FX objects

• Actor-Mixers

• Containers

The Actor-Mixer hierarchy includes four container types:

•

- Random Container: a group of one or more sounds, motion fx objects, and/or

containers that are played back in a random order.

•

- Sequence Container: a group of one or more sounds, motion fx objects, and/or

containers that are played by according to a specific playlist.

•

- Switch Container: a group of one or more sounds, motion fx objects, and/or

containers that are organized into a series of switches or states that correspond to

the different alternatives that exist for a particular element in the game.

•

Setting the Ambient Stage

8

- Blend Container: a group of one or more sounds, motion fx objects, and/or

containers that are played back simultaneously. The sounds and containers within

the blend container can be grouped into blend tracks where sound properties are

mapped to game parameter values using RTPCs. Crossfades can also be applied

between the sounds within a blend track based on the value of a game parameter.

The next step in the process uses multiple audio files whose order will be randomized

when played. For this example we will be creating a random container. A random

container or other type of sound object can be created a few different ways:

• Using the Project Explorer toolbar

• Through the right-click contextual menu

• Using a shortcut key command (Help menu: Wwise Shortcuts Quick Reference

Card)

By selecting the default work unit and then clicking the random container icon in the

Project Explorer toolbar, a new random container is created within the selected work

unit or sound object.

Creating a random container from the Project Explorer toolbar

Once the random container has been created and named, sound objects can be

dragged and dropped directly into it.

Random container containing multiple ambient sound files

Setting the Ambient Stage

9

Now that the four smaller pieces of the background forest night ambience loop have

been added to the container, their order of playback will be stepped through based

on the properties set in the Random Container Property Editor. In Wwise, random

can mean either a standard random selection, where each object within the container

has an equal chance of being selected for playback, or a shuffle selection, where

objects are removed from the selection pool after they have been played. You can

double-click your random container to display its random properties.

Play type properties for a random container

The same looping functionality exists within the properties of a random container,

where a group of audio files can be randomized within the container and looped in

the same way.

Setting the Ambient Stage

10

Looping sounds in a random container using continuous play mode

Once the files have been defined as random and are continuously looping, you

can also control the way that sounds transition or flow from one sound to the

next. Enabling the transition property as part of the looping play mode gives you

additional control over the sound.

Adding a transition type between sound files in a loop

Setting the Ambient Stage

11

In this example, a sample accurate transition creates a seamless looping ambient file.

Other transition options include: delay (silence), Crossfade using constant power,

Crossfade using a constant amplitude, and trigger rate.

The power of this approach is in the diversity that can be gained by the

recombination of multiple sound files at runtime, as opposed to using a single file

of predetermined length. Additionally, by enabling control over the way that sounds

transition, the diversity and complexity gained can deliver varied and non-repetitive

loops. Whether you're dealing with mono, stereo, quad, or surround ambient

backgrounds, each of these looping methodologies are supported.

In this section we’ve successfully begun the process of creating the ambient

background system. With limited resources it’s possible to convey a rich sense of

environment using creatively designed and implemented loops as the foundation.

Adding Detail to a Developing Soundscape

Now that the background ambience has been established, we’ll add dynamics and

variability using techniques not available with a single looping file or set of files.

A forest in the daytime is comprised of many individual sounds, all sounding in

unison. We’ve created several containers of daytime ambient elements such as birds,

crickets, owl hoots, or wolf calls that we’ll employ to continue building a more

complex ambient background.

Random Containers of daytime ambient elements

Randomizing Properties

In addition to setting a static value for volume, pitch, and LPF in the Property Editor,

you can also vary these settings using the Randomizer. The Randomizer allows you

to specify a range of values that can be randomized between for any of the given

properties. Double-clicking the randomizer button in the property box allows you to

author a minimum and maximum amount of random variation. In this example, the

pitch randomizer has been enabled and a random variation of -150 to 150 cents has

been specified.

Setting the Ambient Stage

12

Showing pitch randomization between -150 cents and +150 cents

When a Randomizer is enabled, it turns from grey to yellow to indicate its activation.

Designer Note

Maximizing the randomness of each individual set of content will help

you get the most out of each type of sound. While you may be able to

dramatically vary the pitch of a single cricket chirp without it sounding

strange, an animal call may not have the same ability to be pitched in the

extreme without sounding abnormal.

Setting the Ambient Stage

13

Using the Blend Container to Combine Sounds

Once the individual elements have been added to random containers, and you

have spent some time diversifying their pitch, volume, and LPF properties, it’s time

to combine them into the sound of an animal chorus. One way to play multiple

containers of individual elements is by using the blend container. A single blend

container with no blend tracks will play all child objects simultaneously. This

methodology allows for the summing of multiple sounds and helps keep things

organized.

Additionally we'll want each container to loop its contents, so that the sound of each

element can repeat over time along with the daytime ambient background.

Grouping multiple ambient daytime elements within a blend container

Weighted Randomization Using the Silence Plug-in

If we were to loop all of these sounds constantly, they would quickly become

overwhelming. By introducing silence between each sound file, the sounds play

less frequently and the daytime forest soundscape is given balance. The addition

of a Wwise silence plug-in to a Sound SFX object allows for silence as part of the

randomization between sound files.

Begin by adding a new Sound SFX object to the default work unit by clicking

the Sound SFX icon in the Project Explorer toolbar, a new Sound SFX is created.

Alternately, Sound SFX can be created from the contextual menu or by using

shortcut keys.

Creating a Sound SFX from the Project Explorer toolbar

Setting the Ambient Stage

14

After double-clicking to select the new Sound SFX, you can add silence using the

Add Source menu in the Contents Editor. You can set a static duration in addition

to a random minimum and maximum duration with the Wwise silence plug-in. The

random minimum works in conjunction with the static delay by subtracting from

the duration value.

Creating a silence source plug-in for a sound object

By specifying the weight of each Sound SFX, you have control over the probability of

playback for each audio file within the random container. By weighting the silence

object appropriately, you can predictably add a comfortable sense of repetition

during the playback of individual audio files. This ensures that birds don’t chirp too

often and allows for a randomized duration of silence between bird call variations.

Controlling sound playback probability using the weight setting

Setting the Ambient Stage

15

Designer Note

You don't have to worry about getting individual weights to add up to

100%; Wwise takes care of the math for this automatically based on the

values you input.

Randomized Positioning of Sounds

We now have the individual daytime nature sound types randomizing and summed

together within a blend container. Next, we’ll introduce user-defined 3D positioning

in order to giving the soundscape some life.

Designer Note

The Position Editor (3D User-defined) allows for the definition of spatial

positioning for an object in a surround environment using animation

paths. You can create many different versions of a path and then animate

the sound or music along these paths. You can also define how the

different paths will be played back. The paths you create will override the

position and orientation in the game.

After selecting one of the random containers of elements, you can make changes in

Positioning tab of the Property Editor. By changing the position source from the

default Game-defined to User-defined, you can access the Position Editor where you

can author to determine user-defined playback position of sounds. This technique

is used to enable positional movement for static sounds and also to add positional

randomness to the ambient elements that have been prepared.

Setting the Ambient Stage

16

Setting up user defined positioning for ambient elements

Multiple paths can be created that can be followed or randomized between to

simulate the effect of having many individual sounds coming from different

directions.

Setting the Ambient Stage

17

Defining where sounds will play according to

speaker placement using the Position Editor

Designer Note

How to work with the Position Editor is covered extensively in the

Video Tutorial - Positioning and Distance Attenuation and in the

documentation: Wwise Help > Wwise Reference > Positioning > Position

Editor (3D User-defined)

http://youtu.be/v0D4lJkffII
http://youtu.be/v0D4lJkffII

Setting the Ambient Stage

18

The ambient day and night elements included in the accompanying project have

been created using user-defined 3D positioning and can be referenced for further

insight into this technique.

Creating the Combined Daytime Forest Ambient Combination

Now that both the looping ambient background random container and the blend

container of individual daytime elements have been created, it's time to combine

them within a single blend container.

Using a blend container to combine the ambient

background loop and daytime elements

The randomized daytime elements are now playing in conjunction with the

looping ambient background to create a soundscape that is different every time.

There is always room to add additional variation to sound files themselves, or

through property randomization. Finding the right balance between content

and implementation is a good way to optimize resources and reduce player

listening fatigue. Combining techniques from both of these aspects of integration is

oftentimes the best way to create a successful, non-repetitive playback system that fits

the scope of the game.

Section Summary

Throughout this section we have created the following sound objects:

• Random container with multiple daytime forest ambient background files looping

via transition.

• Blend container containing ambient daytime elements summed with weighted

silence and positioned randomly in 3D.

Setting the Ambient Stage

19

Introduction of a Day and Night Cycle

After a day of travel through the forest, the sun begins to set and the adventure

begins to turn ominous. Growing shadows on the trees transform a once idyllic path

into a dark and foreboding passage. In order to effectively convey the passage of time,

we expect the sounds to accurately reflect the visual environment and mirror the

same sense of despair and unease.

Establishing a Game Parameter

We'll start by having the programmer pass the same information from the

game controlling the visual time of day as a game parameter to Wwise. Used in

conjunction with a blend container that contains the ambient background and

individual elements of the system, we can effectively control the ambient soundscape

in time with the rest of the game.

To begin with, we’ll create a new game parameter for Time_of_Day. Start by selecting

the default work unit from the game syncs tab in the Project Explorer. This allows

you to add a new game parameter from the Project Explorer toolbar by clicking on

the game parameter icon. Alternately, a game parameter can be created from the

contextual menu for a game parameter work unit or by using shortcut keys.

Creating a game parameter from the Project Explorer toolbar

Once the game parameter has been named, the parameter range can be established

in the Property Editor. We’ll set up the Time_of_Day game parameter using values

from 0-24, allowing for the parametrization of sounds according to a 24-hour clock

with 0 representing 12am.

Setting the Ambient Stage

20

Setting the Time_of_Day game parameter values

Creating the Ambient System

Now that we have a game parameter in place that we can use to drive the time of day

simulation, we’ll employ a blend container to play back both the looping background

and randomized positional ambient sounds simultaneously. Once everything is

set up, the forest ambience represents a fully dynamic day and night cycle that

can be controlled and auditioned using the game parameter within the authoring

application.

Using the techniques outlined in the previous section, we can move forward with the

creation of a nighttime ambience that includes the same features implemented for

the daytime. However, instead of putting the day and night containers within their

own parent blend container, we’ll be adding all of them to a single blend container

called Ambient_day_night that will be used to govern the entire ambient forest

system.

Adding all of the day and night containers to a single ambient blend container

Using the Blend Track Editor

Now that everything is in the blend container and playing simultaneously, we need

a way to isolate the day and night elements and integrate the Time_of_Day game

parameter. A special function of the blend container is the Blend Track Editor, which

is used to modify the contents of containers so that their properties can be controlled

by RTPC curves and Crossfades.

Setting the Ambient Stage

21

Blend tracks can be accessed in the General Settings tab of the Blend Container

Property Editor.

Opening the Blend Track Editor from the Property Editor

The Blend Track Editor is made up of two main areas: one where blocks can be

crossfaded, and another where RTPC curves can be added and modified using the

graph view. These areas are enabled by adding a new blend track from the Blend

Track Editor.

Adding a new blend track to an empty blend container using the Blend Track Editor

Setting the Ambient Stage

22

Once a new blend track has been added, it can be named after the ambient

background. Enabling the Crossfade option lets you select a game parameter which

can be used to transition between containers or other sound objects on the blend

track.

Enabling the Crossfade on a new blend track

By adding a Crossfade to the Background blend track using the Time_of_Day game

parameter, you can position containers according to values of the game parameter.

The positioning of containers on the blend track determines the amount of overlap

or Crossfade.

Designer Note

Changing between game parameters with different ranges can affect the

range of the blend track’s audio blocks. In this case, a decision must be

made whether to Stretch the audio blocks or Preserve their position after

the change in game parameter.

Now that a blend track has been added and the ability to crossfade has been

established, containers can be assigned to blend tracks in the Contents Editor.

Blend tracks section of the Contents Editor

Setting the Ambient Stage

23

Setting Container Order within Blend Tracks

Now you can drag and drop containers within the blend container into the blend

tracks section. When setting up a blend track in the Contents Editor, it is important

to position containers in the order you want them to show up, from left to right in

the Blend Track Editor.

You can see how the order relates to positioning in this example:

Blend Track: Background

1. Random container: amb_forest_night_background_loop

2. Random container: amb_forest_day_background_loop

3. Random container: amb_forest_night_background_loop

Random Container order on a Blend Track represented in the Contents Editor

Adding an additional blend track with ordered containers

To complete the full scope of our ambient system implementation, the ambient day

and night elements need to be added to their own blend track.

Blend Track: Elements

1. Random container: amb_night_elements_sum

2. Random container: amb_day_elements_sum

3. Random container: amb_night_elements_sum

Setting the Ambient Stage

24

Container order on a Blend Track represented in the Contents Editor

Adding an additional blend track with ordered containers

The Time_of_Day game parameter cursor can now be used to audition the Crossfade

between containers for both background and ambient elements. You can also

modify the points of these curves and Crossfade types in real time during playback.

Furthermore, game parameters can be used in conjunction with blend tracks to

affect the volume, pitch, and low pass filter parametrically.

Setting the Ambient Stage

25

An example of using a game parameter in

conjunction with volume to affect a blend track

Preparing the Event

Now that the dynamic ambient system has been created, it’s time to prepare the

loop to be played and stopped by the game engine. Wwise uses events as sound,

music, and dialogue instructions to the game. Events determine which sound, music,

motion, or dialogue is played at any particular point in the game and can be used to

control other aspects through the use of different actions (Play/Pause/Stop a Sound,

change its Volume, Pitch or Low Pass Filter, etc.).

Events can also apply actions to the different structures within your project

hierarchy. Each event can contain one action or a series of actions. The actions you

select specify whether the Wwise objects will play, pause, stop, and so on.

To prepare our ambient system to be played and stopped by the game engine when

the hero enters and exits the forest, two events need to be created:

• Play_Ambient_Forest

• Stop_Ambient_Forest

We’ll begin the process of creating a new play event by navigating to the

Ambient_day_night blend container and selecting New Event > Play in the

contextual menu.

Setting the Ambient Stage

26

Creating a new event using the contextual menu

This creates a new play event named after the container in the events section of the

Project Explorer as part of the default work unit.

A newly created event in the events tab of the Project Explorer

Harnessing Event Actions

When the event is created, the Event Editor is brought into focus to reflect the new

event. The new event is created with the Ambient_day_night blend container added

to it with a Play action type.

Setting the Ambient Stage

27

An event created using the Play action in conjunction

with the Ambient_day_night blend container

Event actions can also be removed or added to an event using the Selector.

Setting the Ambient Stage

28

Accessing additional event action options using the Selector

The Event Editor also shows the location of the object for each event action and any

properties available for a given event action.

Designer Note

Each event action has a different set of action properties that can be

modified to produce the desired effects. See the help documentation for a

full listing of event actions and properties:

Wwise Help > Wwise Reference > Events > Event Editor

Wwise Help > Where to Begin? > Wwise Fundamentals > Understanding

Events > Action Events

Wwise Help > Interacting with the Game > Managing Events > Overview

> Types of Event Actions

Setting the Ambient Stage

29

Action properties available for the Play event action

The action properties that can be used to modify the Play event action include:

• Delay - the amount of time that goes by before the action is performed.

• Default value: 0, Default Slider Range: 0 to 10, Input Range: 0 to 600, Units:

Seconds.

• Fade in time - the amount of time it takes for the object to fade in.

• Default value: 0, Default Slider Range: 0 to 10, Input Range: 0 to 60, Units:

Seconds

• The fade in begins after the specified delay, if any.

• Curve - the curve shape that defines how the object fades in.

• Probability- Percentage of probability that an event action will play.

• Default value: 100, Default Slider Range: 0 to 100, Input Range: 0 to 100, Units:

Percentage

Creating Work Units

We’ll approach the creation of a stop event for the Ambient_day_night blend

container a little bit differently.

First, we’ll create a new work unit called Ambient in the events section of the Project

Explorer to begin separating out different components of the project.

At the foundation of Wwise Workgroups is the work unit. Work units are distinct

XML files that contain information related to a particular section or element within

your project. These work units can help you organize and manage the different

elements within a project. Hierarchies of nested work units can now be created and

organized in physical folders and subfolders.

Creating a new work unit can be done through the Project Explorer toolbar by

clicking on the work unit icon. Alternately, a work unit can be created from the

contextual menu from the event heading title.

Setting the Ambient Stage

30

Creating and naming a new work unit

After a work unit is created, you can delete, move and rename it in the Project

Explorer. You can also make these changes to work units and source files from the

File Manager. The File Manager can be accessed through the Project menu.

Setting the Ambient Stage

31

Using the File Manager to delete, rename, or move work units and source files

Now that our Ambient event work unit has been created, we can move our

previously created Play_Ambient_day_night event by dragging and dropping it from

the Default Work Unit.

We can now add a new event called Stop_Ambient_day_night through the Project

Explorer toolbar by clicking on the event icon. Alternately, an event can be created

from the contextual menu or by using shortcut keys.

Setting the Ambient Stage

32

Creating a new event in the Ambient work unit

Double-clicking the newly created Stop_Ambient_day_night event will open it in the

Event Editor. The next step is to add a Stop action by using the event action Selector

and selecting Stop>Stop from the selection of event actions.

Adding a Stop event action to a new event

Once an event action has been added to the event, it needs to be assigned an object

to which the action will be applied or it will show as Missing in the Objects column.

When the event is requested by the game, the specified action needs to be applied to

one of the four object types:

• Sound objects

• Motion FX objects

• Actor-Mixers

• Containers

These objects can be navigated to using the Project Explorer - Browser or dragged

and dropped from the Project Explorer over text in the object column on the event

action in the Event Editor.

Setting the Ambient Stage

33

Navigating to the Ambient_day_night blend

container using the Project Explorer - Browser

Once an object has been added, its location in the hierarchy is updated and the

action properties are available for adjustment.

Setting the Ambient Stage

34

An event created using the Stop action in conjunction

with the Ambient_day_night blend container

After events have been created, they can be integrated into the game engine so that

they are called at the appropriate times in the game. Because of the abstract nature

of events, their components can continue to be fine-tuned within the authoring

application throughout development without having to re-integrate them into the

game engine.

Section Summary

Adding blend tracks gives you the power to order and Crossfade objects and to

modify dynamically them with game parameters within the blend container. The

addition of events and event actions determine which sound, music, motion, or

dialogue is played and how it will play at any particular point in the game. As the

sun sets after a long day of travel, and the sound of birds is replaced with crickets

and the occasional wolf howl, the benefits of this dynamic ambience can really be

appreciated.

Setting the Ambient Stage

35

Sound Emitters in the Game World

With a looping background in place that changes based on the time of day, we can

focus on adding positional sounds at specific locations in the forest to help fill in the

environment, things like rivers, waterfalls, fire pits, and birds in trees. We’ll begin by

setting up several random containers that can be used to add further definition to the

world.

Prepared sounds for use as 3D Emitters

Creating Attenuation ShareSets

The fundamental difference between the previous ambient background

implementation and the explicit placement of a sound in 3D space is in the way

sound changes based on the listener position. A listener is a virtual microphone

in the game that helps assign sounds to particular speakers to simulate a 3D

environment. Attenuation ShareSets can be authored to control the distance based

playback of sounds in relation to the listener.

Designer Note

The Attenuation Editor allows you to define the distance-based

attenuation properties for a particular object. By creating a series of

curves to define the relationship between specific Wwise properties, such

as volume and low pass filter, and the distance between the emitting

source and the listener, you can simulate sophisticated distance-based

attenuation for the sounds, music, and motion in-game. You can further

refine attenuations using sound cones, which simulate attenuation based

on the orientation of the game object in relation to the listener.

Game objects are the central concept in Wwise because every event

triggered in the sound engine is associated with a game object. A game

object generally represents a particular object or element in your game

that can emit a sound, including characters, weapons, ambient objects,

such as torches, and so on.

Setting the Ambient Stage

36

Creating and Establishing Generalized Attenuations

By selecting the default work unit from the ShareSets tab in the Project Explorer, a

new attenuation can be added from the Project Explorer toolbar by clicking on the

game parameter icon. Alternately, an attenuation can be created from the contextual

menu for an attenuation work unit or by using shortcut keys.

Adding a new attenuation ShareSet

Creating generalized attenuations that can be used in many scenarios is a good place

to start. Adding further attenuations that address specific distance-based problems

or special effects can be created on an as-needed basis throughout the course of the

project.

We'll begin by defining generalized attenuations for Ambient Emitters: Large,

Medium, and Small. We'll also imbed some information regarding distance, within

the attenuation name, in order to give some indication of what their intended use

is. When working with a naming standard throughout your project, it is important

to try and adopt some conventions that will be clear to people who may be working

with sound objects, events, game syncs, or ShareSets you have created.

Project Explorer ShareSets showing a set of general attenuations

Setting the Ambient Stage

37

Once created, you can control the amount of reverb, LPF and spread by adjusting

the curve properties. Each curve defines properties based on the maximum distance

set for the attenuation. The maximum distance is distance from the emitting source

where the sound reaches its lowest level. The attenuation of the object remains

constant beyond the max distance.

Defining curve properties, max distance, and the attenuation feature set

Subscribing Sound Objects to an Attenuation

Now that we have established a few generalized attenuations for ambient emitters,

any level of the Actor-Mixer hierarchy can subscribe to them. Remember that any

children of the parent sound object will inherit the subscription unless overridden.

In the first example, we'll subscribe the ambient_tree_rustle sound object to the

ambient_emitters_small_0_5 attenuation so that we only hear trees when the listener

is within five game units of the emitter.

Setting the Ambient Stage

38

We begin by overriding the parent object (if any) and changing the sound to 3D in

the positioning tab. Clicking the Selector button (>>) allows you to navigate the

attenuation ShareSet hierarchy and select the attenuation you want to subscribe to.

Subscribing a sound object to an attenuation

Now, when the ambient_tree_rustle sound object is played, it will obey the definition

of the ambient_emitters_small_0_5 attenuation and you will hear the soft rustling

of leaves when the listener is close to the emitter. If the properties of the attenuation

change, any sound object that is subscribed to it will also change.

Using Spread as Part of an Attenuation

In the next example, we'll take the same ambient_emitters_small_0_5

attenuation ShareSet and subscribe the ambient_fire_campfire sound object to

it. Additionally, we will set the mode to Define Custom in order to use the same

ambient_emitters_small_0_5 attenuation, but also Spread the sound at close distance

for that particular object.

Setting the Ambient Stage

39

Defining a custom attenuation mode

Attenuation editor displaying custom properties

Now that the ambient_fire_campfire sound object has been changed to Define

Custom as its attenuation mode, it is now using a unique instance of the attenuation

that is not shared (or sharable) with any other sound object.

Setting the Ambient Stage

40

Designer Note

Spread specifies the amount or percentage of audio that is spread to

neighboring speakers, allowing for sounds to change over distance from

a point source at low values to a completely diffused propagation at high

values. For multichannel sounds, each channel is spread separately.

In the following image, the sound of the campfire is set to begin spreading between

the available speakers at half its maximum distance (2.5) until it is 100% spread at its

minimum (0).

Setting the Ambient Stage

41

Spread authored in the Attenuation Editor and modified by the distance parameter

Using Low Pass Filter as Part of an Attenuation

To add further realism to the sound of fire over distance, we can also enable a custom

low pass filter that will begin cutting high frequencies as the listener gets further

away.

Setting the Ambient Stage

42

Low pass filter authored in the Attenuation

Editor and modified by the distance parameter

Adjusting Cone Attenuation Properties

Cone Attenuation properties can be adjusted to further influence the directionality

of sounds that subscribe to an attenuation ShareSet. Doing so allows you to focus

sounds in the world by restricting the angle of sound propagation based on the game

objects orientation. This can be especially useful for vehicles, projectiles, and objects

that require a more focused positional sound.

Setting the Ambient Stage

43

Enabling Cone Attenuation properties

Section Summary

Attenuations are specific sets of rules that determine how the sound of objects will

change over distance within your game. They're highly customizable and can be

used as creatively or realistically as your vision requires. Whether you strive for a

heightened sense of reality or a creative impressionistic aesthetic, the flexibility of

attenuations allows you to tailor the sonic propagation palette to your needs.

Setting the Ambient Stage

44

SoundSeed Air -Wind

Whether you find yourself at the edge of a cliff overlooking the path ahead, or

standing at the mouth of a dungeon thinking about what might be lurking in

the shadows, the sound of wind can help add an epic tone to the situation. The

SoundSeed Wind plug-in has been created as a runtime-efficient solution to the

challenge of authoring dynamic wind elements.

The SoundSeed Wind plug-in is a Wwise source plug-in that generates wind sounds

as they pass through and around objects. These sounds are generated by using time-

varying parameter sets to drive a synthesis algorithm. No source audio files are

necessary as the wind sounds are completely synthesized. SoundSeed Wind allows

you to save memory in-game because there is no longer a need for the long looping

wind ambience .wav files that would have traditionally been used.

SoundSeed Wind emulates the flow of wind through a scene; the direction specifies

the point of entry of wind flow on to a scene. Thus you should expect pressure waves

to hit the deflectors closest to the entry point first. The flow will then propagate

through the scene as it is pushed by incoming wind. As it propagates, you will hear

deflector objects that are placed farther from the entry point as they encounter the

oncoming pressure wave. Note that higher wind speeds at the entry point push the

flow at a quicker rate than slower speeds.

The following illustration demonstrates a typical scene where wind and a series of

deflectors are defined using a set of properties. Deflectors will appear smaller or

larger in size and lighter or darker in color, depending on the frequency and gain

property values assigned to them.

Setting the Ambient Stage

45

Deflector and wind properties

The biggest benefits to synthesized wind are the ability to dynamically manipulate

the wind model in real time, the randomness of generating sound differently

every time, and the memory savings incurred by removing audio content from the

equation. What would normally have taken a many seconds long audio file can now

be replaced by realistic models authored within Wwise. These authored sounds

are further modifiable by game parameters at runtime, as well as from within the

authoring application while connected to the game.

Adding the SoundSeed Wind plug-in to a new Sound SFX is accomplished in the

same manner as the silence plug-in covered in the ambient chapter.

Adding SoundSeed Air Wind to an empty Sound SFX

Setting the Ambient Stage

46

SoundSeed Wind - Deflectors

The first step in creating a wind model begins with the placement of a deflector

(or deflectors), which is used to generate wind as it passes through and around the

objects. The Source Plug-in Editor can be accessed in the Contents Editor by double-

clicking the plug-in icon.

Wind Source plug-in icon

The attributes available include:

• Frequency: Represents the size of the deflector.

• Q factor: Is used to simulate deflector surface type.

• Regular (high Q) /round or irregular (low Q)

• Gain: Control of the amplitude of each deflector.

Setting the Ambient Stage

47

Positioned deflectors

SoundSeed Wind - Properties

Like any tool, you can experiment to create and discover the sound you want. For

both wind and deflector properties, a fixed value can be set along with a positive or

negative deviation. All of these properties can be further automated over time, by

adding any number of points in the curve editor.

Setting the Ambient Stage

48

Wind properties and property automation using the curve editor

The Playback rate can be modified using an RTPC in the Time section of Properties,

as can any property with an RTPC indicator. Looping needs to be enabled in the

General Settings tab, just like any sound object, while fixed parameters for loop

duration and additional random duration are set in the Time section.

Setting the Ambient Stage

49

Properties for time related functionality

SoundSeed Wind - RTPC

With properties mapped to game parameters, you can use information from the

game to control various aspect of the wind sound. Imagine using the player velocity

to control the wind speed as they plummet through the air after a successful jump, or

mapping the gusts to an altitude game parameter that changes as the player ascends

along a mountain pass. By bringing parameter control to your wind models, you can

dynamically represent and better reflect the intention of the gameplay and scenario.

Setting the Ambient Stage

50

Ambient Summary

In this chapter we have established some fundamental processes for building

dynamic and varied soundscapes. Many of the techniques covered in this chapter

will continue to inform the rest of this document and serve as the building blocks of

interactive audio.

Throughout this chapter we have:

• Created various types of sound objects

• Used sound objects as building blocks for an ambient soundscape system

• Established looping backgrounds

• Created a system to randomly playback individual ambient elements

Stepped through the process of:

• Importing simple sounds to containers

• Using blend containers to sum and playback multiple sound objects

simultaneously

• Creating a game parameter that can be used to modify properties

• Using the Time_of_Day parameter to Crossfade between containers

Also touched on:

• Using attenuation ShareSets to manage distance based falloff

• The use of SoundSeed Air - Wind to author realistic sounding dynamic wind

• Leveraging paths using the Position Editor to randomly position individual

ambient elements in 3D space.

And created the following objects:

• Looping background random containers.

• Ambient_day_night blend container that Crossfades between content using blend

tracks based on a time of day game parameter.

• SoundSeed Wind models to be used as positional sound emitters.

• Generalized attenuation ShareSets for ambient emitters.

Setting the Ambient Stage

51

Ambient Additional Resources

Wwise Knowledge Base - How does Wwise handle multichannel sources with 3D

positioning?

Wwise Knowledge Base - How do I simulate a sound that is not a point sound

source?

Video Tutorial - Using the interface

Video Tutorial - Importing Audio Files

Video Tutorial - Building Sound Hierarchies

Video Tutorial - More Learning Resources

Video Tutorial - SoundSeed Air Wind Overview

Video Tutorial - Using the Blend Container

Video Tutorial - Relation between Sound- Source and Audio File

http://kb.gowwise.com/questions/206/How+does+Wwise+handle+multichannel+sources+with+3D+positioning%3F
http://kb.gowwise.com/questions/206/How+does+Wwise+handle+multichannel+sources+with+3D+positioning%3F
http://kb.gowwise.com/questions/51/How+do+I+simulate+a+sound+that+is+not+a+point+sound+source%3F
http://kb.gowwise.com/questions/51/How+do+I+simulate+a+sound+that+is+not+a+point+sound+source%3F
http://www.youtube.com/watch?v=XYE_IrHeEkM&hd=1
http://www.youtube.com/watch?v=1ICV_U3NoUg&hd=1
http://www.youtube.com/watch?v=IXOVdE3o7Lw&hd=1
http://www.youtube.com/watch?v=TB-pWC0XLho&hd=1
http://www.youtube.com/watch?v=vN5NDfT7tXU&hd=1
http://www.youtube.com/watch?v=uzZCBi6CSLQ&hd=1
http://www.youtube.com/watch?v=KWR99iBXj3I&hd=1

52

Chapter 2. Establishing Character

Overview .. 53

Footsteps and Movement - Establishing Needs ... 54

Simple Steps .. 54

Switching System Introduction ... 56

Defining Step Type .. 57

Defining Surface Type ... 60

Defining Character Type ... 62

All Together Now .. 63

Movement .. 64

Defining Armor Type .. 64

Creating the Movement Event ... 65

Character Summary .. 67

Character Additional Resources .. 69

Establishing Character

53

Overview

From the hero’s first steps through the forest, to the upgrading of armor after a

dungeon crawl, movement sounds help to anchor the player firmly in the game

world. While the content demands of character sounds can vary wildly across

different game types, the fundamentals remain consistent across any genre.

In this chapter we'll walk through the following process:

• Creating player and Non-Player Character (NPC) movement sets.

• Understanding switch groups, switches, and how to use them.

• Establishing multi-level switches to manage:

• Surface Type

• Player Type

• Step Type

Character sounds persist throughout every area and scenario of the game world.

Special care and handling should be used when defining the aesthetic and

implementation that result in sounds heard frequently throughout gameplay.

Thankfully there are several different ways to approach movement sounds for any

situation.

Establishing Character

54

Footsteps and Movement - Establishing Needs

To establish audio content needs, it's important to understand a few things about

how to best support gameplay when it comes to movement sounds. You can easily

create a simplified step system, but a varied system produces a better experience. The

importance of varied footstep sounds in a game can be a delicate balance of finding

the right places to put resources without ending up with a system that uses up all of

the available memory.

Think about the following questions to help you determine how extensive the

footstep system should be:

• How many step types will characters have? (Walk, run, scuff, turn...)

• How many surface types need to be represented with sound? (Dirt, stone, sand...)

• How will footstep sounds be triggered? (Animation, programatically...)

• How often will you hear footsteps for an extended period of time? (2-5 minutes,

10-20 minutes...)

Simple Steps

A simplified footstep system might consist of a randomized container of individual

footstep audio files played each time a characters step reaches a certain frame of

animation. These animation-based footsteps are usually marked (or tagged) with

a Wwise event for each frame of animation, where the footstep is meant to play

back a sound. Different types of steps such as walk, run, turn, scuff, jump, land, etc.

would then be explicitly tagged to a frame of animation, corresponding to an event

comprised of the correct sounding steps.

Simplified footsteps implementation

Establishing Character

55

While this technique may still have its place in games where there are few footsteps,

the simplified system quickly shows its limitations because of its recognizable

repetition and the inability for sound designers to manage variables from within the

authoring application.

Establishing Character

56

Switching System Introduction

Switches represent the different alternatives that exist for a particular game object

within the game. Sound, music, and motion objects are organized and assigned to

switches so that the appropriate sound or motion object will play when a change is

made from one alternative to another in game. The Wwise objects that are assigned

to a switch are grouped into a switch container. When an event signals a change, the

switch container verifies the switch and the correct sound, music, or motion object is

played.

To take this a step further, we are going to build a cascading set of switch groups that

work in concert to play the correct footstep sound based on:

• Step Type

• Surface Type

• Character Type

To unleash the full power of switches a programmer will need to define these in the

game engine to drive the system.

It’s common for every asset in a game to include metadata about what the asset is,

be it a rock texture or character model, along with the properties that define it. By

using these already existing definitions, or creating this data to control the switching

system, we move closer to a data-driven pipeline making things easier to manage and

scale throughout development.

Designer Note

Using information from the game to drive the switching system in Wwise

is something that should be discussed with an audio programmer as soon

as possible during the development cycle. There are great opportunities

to automate much of the challenge that comes with this aspect of

implementation.

Establishing Character

57

Multi-level switch system showing switch between:

character type, surface type, and step type.

While seemingly complex compared to the simple method of footstep

implementation, the flexibility of using information from the game allows for greater

control of the resulting sound and puts creative control in the hands of the sound

designer.

Defining Step Type

We'll start by creating a new work unit for our footstep switch and add a Switch

Group for Step_Type to change between walking and running switches. By selecting

the new Footstep_Switches work unit and then clicking the switch group icon in the

Project Explorer toolbar, a new switch group is created.

Establishing Character

58

Creating a switch group in the “Footstep” switch work unit

Once the new switch Step_Type switch group has been created, switches can be

added by selecting the new switch group and then clicking the switch icon in the

Project Explorer toolbar. New switches are created: one for each step type: Walk and

Run. Alternately, switches and switch groups can be created from the contextual

menu or by using shortcut keys.

Creation of the Step_Type switch group and corresponding Run and Walk Switches

A new switch container which contains both run and walk random containers can

now be created.

Establishing Character

59

A switch container containing both run and walk random containers

The switch type can then be defined by using the switch type Selector button (>>)

and selecting the new Step_Type Switch Group (1). Next, the walk and run random

containers can be assigned by dragging and dropping them to the appropriate Switch

in the Assigned Objects area of Content Editor (2).

Adding the Step_Type switch group and assigning objects

Auditioning the different step types can be done through the Transport Control.

After selecting the fs_Hero_Forest_Step_Type switch container by double clicking it,

clicking the play icon or pressing the spacebar will play the object. Setting the switch

can be done from the game syncs section of the Transport Control. When selected,

any associated game syncs available for the object will be displayed.

Transport Control showing the selected switches game

sync and available switches for the selected game object

Establishing Character

60

Defining Surface Type

One of the greatest potentials for diversification, and something that immediately

communicates a sense of place to the player, is the inclusion of different footstep

surface types. While these may be represented in the game visually, it may take extra

effort to communicate information about the surface type a character is traversing as

a switch. Ideally the game engine has a way to specify the surface type of a traversal

area, and this specification can be posted to Wwise as a switch.

Programmer Note

There is a helpful footstep integration example that comes as part of the

Wwise Programmer SDK.

Designer Note

Once surface type is communicated to Wwise, there are other

applications and uses for this information. If, for instance, you were

building a dynamic rain system, you could use surface type to change

rain drop impact playing back positionally from different surfaces in the

game world. Also, most physics impact sounds benefit from knowing the

surface material being impacted. As an example, the sound of a wood

plank falling on dirt will have a much duller sound than on concrete.

As in the previous section, we’ll create a new switch container and subscribe it a

new Surface_Type switch group (1). We can then add the random containers to

the appropriate switches for either dirt or forest in the assigned objects area of the

Content Editor (2).

Establishing Character

61

Adding the Surface_Type switch group, and assigning objects

Using a multi-level switching system contributes to an organized and consolidated

working methodology which is supported within the Wwise hierarchy. It also helps

to keep the implementation clear and concise. Furthermore, switches can be added

to switch groups as new types become available in the game, which makes scaling a

straightforward endeavor. As an example, if we want to add an additional switch for

the Stone surface type, we can add it to the switch group, and it will show up in the

Assigned Objects section of the Contents Editor for any sound object subscribed to

the Surface_Type group.

Adding an additional switch to an existing switch group

Establishing Character

62

Let’s say the sound content for the Stone footsteps hasn’t been delivered yet. We

can temporarily use any available audio content until it is ready to be replaced.

Temporarily assigning content allows for immediate feedback and helps validate a

working system. This can be further verified by looking at the capture log returned

from the game as part of the Wwise Profiler. (See Optimization 10.4 Understanding

the Different Types of Profiling in Wwise)

This level of abstraction also allows you to share content between Switches and,

when combined elementally, can produce additional variations without the need for

additional content. For instance, combining Dirt and Stone sounds could produce a

dirty/stone surface type variation using content that already exists.

Adding multiple sound objects to a single switch

Defining Character Type

Taking this a step further, we can also add a Switch Group for the Character_Type:

Character_Type switch group and switches

Establishing Character

63

All Together Now

We now have switching information communicated from the game to Wwise for

three different aspects of character sound:

• Step Type

• Surface Type

• Character Type

The combination of these switches when the Footstep event is triggered by the game

will cause a sound from the correct character, step and surface type sound object

to be played. Now instead of having multiple events to keep track of, we can simply

pass a single event for a 'footstep' from the game and let switches handle the correct

playback of sound as defined by the game.

Designer Note

Another technique used sometimes at the content level is the separation

of heel and toe variations. This adds further diversity through

randomized combination and, if the content is designed appropriately,

can exponentially increase the variations and further reduce the chance

for repetition. By setting up a sequence container with a randomized

Heel container (1) followed by a randomized Toe container (2), each

step can be composed on-the-fly when a footstep is requested. Further

memory savings may be possible if you're able to share heel or toe

components between different surfaces. By working elementally with the

techniques available within the Wwise authoring application, you can

increase variation and reduce your memory footprint, which is a winning

prospect for any development.

Sequencing heel and toe to reproduce a single footstep

Regardless of the level of detail your game and implementation requires, Switches

provide an efficient way to deal with groups of content whose playback is dependent

on information from the game engine.

Establishing Character

64

Movement

Another key aspect to movement sound is the sound of clothing material as a

character travels through the world. Whether it's age-old leather, chain-mail, or

plate style armor, the distinguishing characteristics add to the footstep sounds and

help bring an additional level of believability. The sound of movement is especially

important if different types of wearables can be changed or added during the course

of gameplay. Changing out the sound whenever possible helps to reinforce a choice

made by the player and adds to the level of realism throughout their experience.

Defining Armor Type

Similar to the switching system implemented for footsteps, we'll use the

Character_Type and Step_Type switches in addition to a new switch for

Armor_Type.

Armor_Type switch group and switches

With each of these switches being used to drive the switching system, the hierarchy

can be organized to switch between appropriate sound content.

Movement switches with assigned step types

Establishing Character

65

Creating the Movement Event

Once we've got everything switching appropriately and all the content in place, it's

time to add the parent movement switch container to the footstep event using the

Play action.

Design Note

Depending on the sound content for movement, playing the armor

material sound simultaneously with the sound of the footstep may not

be desirable. In situations where it is preferable to give the footstep

some room to be heard, the delay property can be used as part of

the movement play action. Further adding a fixed delay offset to the

movement sound, in addition to delay randomization, increases the

randomness and lends itself to a more realistic representation.

Movement switch and delay offset properties

Using this technique we can better represent the sound of movement between

footsteps, it also adds a feeling of variation and uniqueness to each footstep event.

Establishing Character

66

Other switch specific functions, such as the ability to drive switches based on game

parameters, continuous switch mode, and fade behaviors are additional techniques

for creative implementation. Furthermore, switches can be a handy organizational

tool and a convenient way to harness game information as part of a streamlined

workflow.

Establishing Character

67

Character Summary

Throughout this chapter we’ve come to a greater understanding of switch groups,

switches, and their use as part of a system that works in conjunction with game

information. The strength of building a system based on information from the game

is in the ability to change, control, and manipulate content within the tool, without

changing code. It also puts control over behaviors independent of the game in the

hands of the sound designer.

Throughout this chapter we have:

• Discussed establishing a simplified model of footsteps.

• Developed an understanding of switch groups, switches, and their use.

• Discussed the randomization of properties within a sound object.

• Arranged containers within the assigned objects section of the Contents Editor.

Stepped through the process of:

• Creating sets of player and Non-Player Character (NPC) footstep random

containers based on:

• Character type

• Surface material type

• Footstep type

• Creating sets of player and Non-Player Character (NPC) movement random

containers based on:

• Character Type

• Footstep Type

• Armor Type

• Establishing switches to manage:

• Surface Type

• Player Type

• Step Type

• Creating a multi-level switching system for footsteps and movement.

Also touched on:

• Using delay offset in the Event to introduce natural randomness in movement

sounds.

Throughout this section we have created the following objects:

• A multi-level switching system that determines the character, surface, and step

type when the footstep event is played.

• A multi-level switching system for movement sounds with randomized delay

offset in the footstep event.

Establishing Character

68

• A footstep event comprised of play actions for both footstep and movement switch

systems.

Establishing Character

69

Character Additional Resources

Wwise Help > Where to Begin? > Wwise Fundamentals > What are Game Syncs? >

Understanding Switches

Wwise Help > Interacting with the Game > Working with Switches

Wwise SDK - Windows » Sound Engine Integration Walkthrough » Integrate Wwise

Elements into Your Game » Integrating Switches

Video Tutorial - Creating Footsteps using Random and Switch

http://www.youtube.com/watch?v=ldWjVbtSX_8&hd=1

70

Chapter 3. Preparing for Combat

Overview .. 71

Defining Sound Sets for Weapon Types .. 72

SoundSeed Air - Whoosh .. 73

Understanding Impact ... 78

Defining Weapon Type .. 78

Weapon Impact System ... 79

Attenuations for Player vs. NPC ... 81

High Alert .. 81

Listener Considerations ... 81

Combat Summary ... 83

Combat Additional Resources ... 84

Preparing for Combat

71

Overview

The sounds of combat serve as punctuation marks along the journey, as the hero

battles across the ambient soundscape we've created thus far. With each new

encounter, each enemy variation, each weapon upgrade, sound has the ability to

reward the player with dynamic audio that equals the unfolding drama on-screen.

This chapter will take you through the process of:

• Defining sound sets for different weapon types.

• Generative weapon swings using SoundSeed Whoosh.

• Understanding different implementation techniques for impacts.

• Attenuations for player vs. NPC.

Starting with a list of available weapon types is one way to approach the sometimes

sizable task of combat sound. Once the list has been defined, it's important to

understand the different ways that weapons will be triggered, and how to organize

them within the project.

Some questions to ask about combat:

• How will combat sound be triggered by the game engine?

• Do most of the combat actions rely on the animation system?

• Is hit detection for impacts handled separately from animations?

When locked in mortal combat with a foe of ill repute, one of the roles that sound

plays is in communicating success or failure for each attempted strike. Once you have

determined how combat sounds will be played back, you can make sure the actions

are represented with the appropriate sound.

Preparing for Combat

72

Defining Sound Sets for Weapon Types

At the basic level, you can usually count on the playback of swings and impact to

share the same implementation technique across different weapons. Additional

accents and special moves may be unique; however, there is usually a logic to what

attacks can be shared by multiple weapons and which may require special handling.

Whether designing a single sound for each action, or working from a pool of basic

sounds that can be used as building blocks, how you approach the design often

begins with knowing how it will be implemented in the game.

In this example, we are going to use unique weapon swing sounds created using the

SoundSeed Air - Whoosh plug-in. The Whoosh plug-in generates sounds made as

a simulated object passes through the air. This makes it perfectly suited for close

combat weapon swooshes, bullet fly-bys, and other motion sounds.

We'll also take a different approach for weapon impacts and combine different

material type sounds, based on the surface type (or types) being impacted. This

methodology allows us to get a maximum of diversity out of a core set of audio files,

by utilizing the surface type switches already created for footsteps.

Preparing for Combat

73

SoundSeed Air - Whoosh

The SoundSeed line of plug-ins has been created to further extend the functionality

of the Wwise authoring application and provide a unique solution to a common

problem. When faced with the challenge of keeping repetitive sounds fresh, dynamic,

and varied, SoundSeed provides resource conscious creative tools that bring the

design of sound one step closer to the game.

The SoundSeed Whoosh plug-in is a source plug-in that generates sounds as an

object passes through the air. To create these types of sounds, the characteristics of

the deflector object are defined along with the trajectory movement and speed of

the object. No source audio files are necessary as the whoosh sounds are completely

synthesized. SoundSeed Whoosh allows you to save memory in-game because .wav

file variations are no longer necessary. Additionally, the Whoosh source can be used

to create variations using the multiple randomization features.

We’ll begin by creating the first of many sword swings that will be available to the

hero. It begins with an empty Sound SFX in the Combat work unit nested into the

Swing actor-mixer.

An empty Sound SFX in preparation for adding a whoosh source

We can now add a SoundSeed Air - SoundSeed Whoosh plug-in by navigating to the

Add Source Selector button (>>) in the upper-right corner of the Contents Editor.

Whoosh Source plug-in Add Source Selector button (>>)

The Source Plug-in Editor can be accessed in the Contents Editor by double-clicking

the plug-in icon.

Whoosh Source plug-in icon

Preparing for Combat

74

Authoring Whoosh sounds in the source plug-in editor

Whooshes are a combination of one or many deflectors representing an object and

its traveling path. Deflector settings are used to determine the shape of the object,

while anchor defines whether the object is spinning or not.

• Frequency: Represents the size of the object.

• Q: Is used to simulate deflector surface type. (regular [high Q]/round or irregular

[low Q])

• Gain: Control of the amplitude.

The object path is comprised of points in a path and defines the movement direction

of the object through space.

Preparing for Combat

75

Deflector properties and object path

Any number of points can be connected to produce the desired travel path, which

appropriately pans based on speaker setup and the number of channels specified in

the Settings.

For the weapon swings, we'll be using the two channel setting in conjunction with

a path that traces an arc in front of the player from left to right. For the sake of the

example, we'll create Whoosh models for sword, axe, and dagger weapon types.

Preparing for Combat

76

Prepared Whoosh sounds for use by weapon swings

Designer Note

Not just reserved for short duration swings, coupling a circular path with

a long time duration can add additional movement sound as a special

effect. Due to the generative nature, the simulation and resulting sound

will be different every time. Adding a randomized multichannel Whoosh

element as part of a spell casting effect could be used to further wrap the

player in a swirling maelstrom of sound, without having an impact on the

memory budget.

Similar to SoundSeed Wind, properties that control the object's movement can

be fixed, randomized, or parametrized via RTPC. The added ability to create

automated curves for properties allows you to add further movement and controlled

randomness to help sculpt whoosh sounds.

Preparing for Combat

77

Whoosh properties, automation curves, and time settings

Ignoring all of the memory saving benefits of generative sound design, there is an

incredible amount of creativity encapsulated in the SoundSeed suite of plug-ins.

By taking a common sound design tool and making it available as part of a game

audio authoring application, generative synthesis at runtime can help bridge the gap

between design and implementation. Add to this the ability to affect properties in

real time using game parameters and you have a winning combination of dynamic

flexibility and memory efficiency.

By establishing the weapon swing sounds within a single swing Sound SFX , the need

for content variation has been removed by leveraging the features in Whoosh.

Preparing for Combat

78

Understanding Impact

With the beginnings of a weapon swinging in place, we’ll move on to the finer details

involved with impact sounds and the bashing of bad guy skulls. Object impacts are

often handled with either a composite sound (meant to convey the emotional intent

of the impact) or by creating a multi-layered system (aimed at recreating the sound

of reality). The first decision about which direction to take lies in the type of game,

and what will best support the style and expectation of the player.

In a system that relies on a minimum of variation, it may be enough to simply play

a group of randomized audio files for an impact - for any weapon, on any surface.

Taken a step further, the weapon type could be used to determine the impact sound

and play, regardless of surface type. Still further, each weapon type could have a

different impact sound on each surface type in the game, making a sword impact on

stone sound different than dirt or an axe impact on wood.

Regardless of whether you choose to represent object interactions abstractly or by

embracing a model that skews closer to reality, the Wwise authoring application can

accommodate your decision.

Defining Weapon Type

In the continued pursuit of randomness and variation, we are going to build a system

that utilizes switches in a similar fashion to the previous footstep and movement

examples. Instead of focusing on character and step type, we’ll use weapon type in

conjunction with an expanded list of surface types to allow for an increased level of

detail.

Weapon_Type switch group and switches

This switch group will change based on the weapon type being wielded by either the

player or NPC and will be assigned a unique sound object for each type. Now that

there is an established switch group for weapon type, it can be used to implement the

swings created in the previous section by parenting them within a switch container,

setting the switch group, and assigning the objects.

Preparing for Combat

79

Weapon type switch group with assigned swing sounds

Weapon Impact System

It should be assumed that throughout countless battles our hero will inevitably taste

the sting of a blade. In order to add further detail to the impact system, we’ll add a

switch for flesh to the surface material switch group.

Switch for new surface type

Once switches have been defined in the game and material settings have been set, the

properties of the game object being requested will drive the switches and play the

appropriately assigned sound for the combination of weapon and material type.

Assigned weapon type objects

Preparing for Combat

80

Assigned surface type objects

With the escalating number of surface materials in today's games, you could

continue adding detail to the sound for as long as the memory budget allows. By

utilizing the previously mentioned technique [Character 2.2] for sharing different

surface material content between switches, you can help extend the content while

increasing detail. With thoughtful sound design and well designed systems, you can

overcome many limitations through the creative use of implementation.

Preparing for Combat

81

Attenuations for Player vs. NPC

Now that we have a fully switching impact system that can be used for any

defined weapon in the game, it's important to begin establishing and subscribing

attenuations to ensure that the sound appropriately falls-off over distance. While

we've already discussed simple attenuations in the Ambient chapter, they'll be put to

further use in helping to define the attenuations of combat sounds.

High Alert

Before the battle has even begun, there is an opportunity to alert the player of an

enemy's presence by allowing their idle sound and footsteps to be heard outside of

the range where they would attack. Using sound to inform the player of approaching

danger can help heighten awareness and prepare for the pending struggle. It

starts with knowing at what distance an enemy will attack, and continues with an

attenuation that allows the player to hear movement before combat begins. Let's

assume that an enemy will engage the player within 15 game units. By extending the

movement sounds' max distance for the attenuation to 20 game units, we can make

sure the player has time to equip appropriately for the oncoming altercation.

Listener Considerations

In most cases the listener is positioned at either the player or camera, or at some

(possibly parametrized) interpolation between the two. The sound changes based

on the proximity of the listener to the NPC, and the attenuation provides the falloff

properties. This scenario is widely used in 3D games and well understood in game

audio. However, choosing where to implement the listener in the game may require

special considerations for player sounds.

While some situations may benefit from being played back in 2D on the player (such

as surround magic effects), there are potential pitfalls that could cause undesirable

results, specifically, in the common scenario where the camera moves through the

world to highlight action taking place elsewhere in the environment. If a sound

playing from the position of the player is set to 2D when this happens, the sound

will persist even though the player is no longer part of the visual scene. In this way

it’s usually safest to continue treating the player attenuations in the same way we’ve

begun with NPCs, as 3D sounds.

While you may start out sharing several of the same attenuations, a unique

attenuation ShareSet can always be applied at any level of the hierarchy. Additionally,

you can create a custom attenuation that will apply only to a single object. Changing

the mode of a sound objects attenuation from Use ShareSets to Define Custom

applies a unique instance of the attenuation that is not shared (or sharable) with any

other sound object.

Preparing for Combat

82

Taking an attenuation ShareSet and defining custom properties for a sound object

While defining custom attenuations can be a good solution as an exception to the

rule, there is more power and transparency to creating ShareSets which are all

managed in one place.

Once you're gotten the feel for the way sound propagates in the game, you'll find

yourself instinctively using attenuation ShareSets you've created for new sounds. By

establishing well defined and flexible attenuations, a distance falloff model can be

created that suits the game.

Preparing for Combat

83

Combat Summary

In the Combat chapter we’ve been working on establishing swings and impact based

on weapon type. Along the way we looked into the functionality of SoundSeed

Whoosh to replace the traditional audio file variation model with a powerful

synthesis toolset. We also continued investigating the use of attenuations in

conjunction with listener positioning and how they can work together to positively

affect gameplay and help define propagation models.

Throughout this chapter we have:

• Discussed the aesthetic choices involved in designing the sound of different

weapon types and implementations.

• Discussed the use of generative weapon swings using SoundSeed Whoosh to

replace content based variations.

• Exposed different implementation techniques for impact sounds.

Stepped through the process of:

• Creating swing sounds for different weapon types using SoundSeed Whoosh.

• Creating a switching system for weapon swings based on weapon type.

• Creating a switching system for weapon impacts based on weapon and surface

type.

We've also touched on:

• Scaling complexities of material based impact detection.

• Using different attenuations for the player vs. NPC.

• Considerations when choosing the position for the listener.

Throughout this section we have created the following objects:

• Swing Sound SFX objects for sword, axe, and dagger authored with SoundSeed

Whoosh.

• A weapon swing switch system based on weapon type.

• A weapon impact switch system used to determine impacts based on weapon and

surface type.

Preparing for Combat

84

Combat Additional Resources

Video Tutorial - SoundSeed Introduction

Video Tutorial - SoundSeed Air Whoosh Overview

http://www.youtube.com/watch?v=d6UjgN23P_Y&hd=1
http://www.youtube.com/watch?v=P4cQi2tnyS8&hd=1

85

Chapter 4. Making Magic

Overview .. 86

Summing and Layering with Blend Containers .. 87

Creating Distance-Based Blend Tracks .. 88

Setting up a Game Parameter ... 88

Crossfading Between Containers on a Blend Track ... 91

Section Summary .. 92

Real-Time Parameter Control (RTPC) .. 93

Using Real-Time Effects .. 95

Unleashing Dynamic Synthesis ... 99

Wwise Synth One .. 99

Modulators .. 103

Modulator LFO ... 103

Modulation Envelope .. 108

Magic Summary .. 114

Magic Additional Resources .. 115

Making Magic

86

Overview

Whether casting spells to fend off a grue attack, getting blasted by dark wizards, or

summoning succubus from the nether realms, the rules of magic have been handed

down from generation to generation by sorcerers older than time itself. You can

experiment with sound in the Wwise authoring application to deploy your sonic

alchemy and unleash a powerful torrent of audio mayhem.

This chapter will take you through the process of:

• Summing and Layering with the Blend Container.

• Using effects.

• Using Real-time Parameter Control (RTPC).

• Leveraging blend tracks as part of a distance based perspective model.

• Using Modulator Envelopes and LFOs to diversify properties of a sound.

• Creating a synthetic element using Wwise Synth One.

The approach for creating unique magic effects begins with inspiration. From

there, audio files and synthesis define the sound palette for the eventual effect.

You can seriously up the creativity quotient in your effects by taking individual

sound element variations, or layers of sound, and recombining them using blend

containers. Then draw on parameters from the game to add dynamic variability.

Making Magic

87

Summing and Layering with Blend Containers

As discussed in the Ambient chapter, a blend container simultaneously plays the sum

of its contents. By taking individual sound element variations, or layers of sound

design, and recombining them using the blend container, startling new effects and

composites can be achieved that help extend the content. This is especially true when

coupled with randomized properties or additional effects available at any level of the

Actor-Mixer Hierarchy.

The Magic blend container is comprised of multiple random containers

Making Magic

88

Creating Distance-Based Blend Tracks

Another way to use blend tracks is to create a complex distance-based blend to

diversify perspectives or, simply put, to change the sound content based on distance.

This technique can be quite effective when implementing ranged weapons, moving

objects, or in this case, magic effects.

We’ll be creating a blend container that changes the sound of magic impact blasts

near the player, and from a far off distance perspective. When the magic blast event

is triggered, the perspective (or combination of perspectives) is played based on

the blast game object's distance to the player. So, the content will have more high

frequency detail and sense of danger at a close distance from the player and a slightly

low pass filtered and reverberant sound when far away.

Magic effects are often associated with particle or visual effects within a game

environment. While many particle effects are comprised of different techniques that

contribute to the resulting visual effect, there is usually a point of origin, referred to

as the game object that travels as the center of the effect in 3D space and can be used

to attach sounds. Using the distance to player as part of a dynamic effect can help

give a sense of movement to the sound and increase the dramatic effect by lending a

positionally significant modifier.

Setting up a Game Parameter

We can get information about the game object's proximity to the player from the

game engine and use it through a new game parameter called Distance_to_Player

throughout the project.

Setting up the Distance_to_Player game parameter

It's easy to get distance info and other values directly from the Wwise audio engine.

You can subscribe to a built-in value for the distance between the listener and the

game object from a list of built-in values calculated inside of the audio engine using

the "Bind to Built-In-Parameter" drop-down menu.

Making Magic

89

Binding the Built-In Distance value to the Distance_to_Player Game Parameter

The following built-in parameters are calculated by the audio engine and are

available to be bound to game parameters:

• Distance - Distance to game object.

• Azimuth - Horizontal angle.

• Elevation - Vertical angle.

• Object-to-listener Angle - Angle between object's orientation and the listener.

• Occlusion - As set by the game on the game object.

• Obstruction - As set by the game on the game object.

Interpolation can be used to apply a kind of "smoothing" to the values sent by the

audio engine. The modes (other than None) let you modify the rate (in Units) or

time (in seconds) when target values go upward (Attack) or downward (Release).

Adding an Interpolation Mode helps keep values from the game engine from

"jumping" or "stepping" too quickly which may cause, for example, a voice volume

to abruptly increase in volume. The Interpolation properties allow for controlled

transitions between Game Parameter values sent from the game or from within the

Wwise audio engine.

In this example, the behavior of the Distance_to_Player game parameter is modified

using the Interpolation properties available in the Game Parameter Property Editor.

Making Magic

90

Setting the Game Parameter Interpolation Mode

Interpolation Modes can be set using the Mode drop-down list and include:

• Interpolation Mode - None: Jump straight to the target value.

• Interpolation Mode - Slew Rate: Limit the game parameter variation rate to the

specified Attack and Release rate. (Units)

• Interpolation Mode - Filtering Over time: Filter the game parameter current

value to target 99.5% of the target value within the specific Attack/Release time.

(Seconds)

The Interpolation Mode for the Distance_to_Player Game Parameter will be set to

"Slew Rate" with a Attack (in Units) of 50 and Release (in Units) of 50 to produce the

desired effect.

Making Magic

91

Crossfading Between Containers on a Blend Track

Now that there is a way to track how far an object is from the player, we can use this

information to drive the Crossfade between various containers on a blend track

inside of a blend container we have named magic_blast_fire_distance_blend.

As we did for the blend containers created for the ambient system, a new blend

track will be created with a Crossfade enabled based on the new game parameter for

Distance_to_Player.

Creating a new blend track with Crossfade enabled

based on the Distance_to_Player game parameter

Randomized containers can then be added to the assigned objects area in the

distance blend track. As previously mentioned, the order of these containers in the

assigned objects section is reflected in their positioning on the blend track.

Adding containers to the blend track in the correct order

Making Magic

92

After the information is passed successfully from the game, the Distance_to_Player

game parameter controls the Crossfade between containers, playing only the

container (or containers) beneath the game parameter cursor.

• When the game object plays the magic blast event within 0-25 units from the

player, the magic_blast_fire_blend_near is heard alone.

• When the game object plays the magic blast event within 25-75 units from the

player, a blend of both perspectives is heard.

• When the game object plays the magic blast event within 75-100 units from the

player the magic_blast_fire_blend_far is heard alone.

Designer Note

While similar distance-based blending can be done using multiple

attenuations, there are workflow benefits to managing these within blend

tracks.

Section Summary

We have successfully implemented magic blasts that change between audio content

dependent on the location and distance of the game object from the player. This

technique is best used when there is a need to represent different perspectives or

levels of detail at the content level. While simple filtering can also be applied to

help change the tone of the resulting sound, you can add richer levels of detail by

designing the content appropriately.

Making Magic

93

Real-Time Parameter Control (RTPC)

To push magic effects further into dynamic territory, you can employ Real Time

Parameter Control (RTPC) for any sound object in the Actor-Mixer hierarchy or

any audio bus in the Master-Mixer hierarchy. RTPC can be accessed in the Property

Editor for any sound object, and new modifiers can be added using the Selector

button.

Using the magic_blast_fire_distance_blend, a pitch curve can be added using the

Distance_to_Player game parameter as part of the object’s RTPC. The distance curve

value can be used to dynamically affect the sound of the magic blast by modifying

pitch based on the magic blast’s proximity to the listener. Similar results can be

obtained using RTPC within the blend track.

RTPC using the Distance_to_Player game parameter to control the amount of pitch

Making Magic

94

RTPC further modifies properties of a sound object by opening dynamic possibilities

for making your content change based on information from the game. In this

example, we have taken and modified the magic blast, pitching it up as it approaches

the player. This gives the approach of the magic blast an immediacy that is reflected

by its pitch.

Making Magic

95

Using Real-Time Effects

In addition to the unique features within the blend container, Wwise ships with a

suite of DSP Effects that can be used to modify content after it’s been imported,

enabling additional sound design possibilities from within the authoring application.

Available in the Property Editor of every audio object, and additionally within the

Master-Mixer hierarchy, these effects can be added to modify sounds using fixed

settings or dynamically at runtime using game parameters.

Designer Note

When effects are applied to a bus, all incoming audio data is sub-mixed

before the effect is applied. If a chain of effects is applied, the effects are

applied in the order in which they appear in the list.

RTPC for effects can be found in the Effect Editor

after clicking the Edit button for an enabled effect.

The Edit button is used to access the effect editor

Making Magic

96

The Effects Editor displays all of the settings of an enabled effect, including access to

any properties that can use RTPC.

The effects settings panel and access to the RTPC tab

From the RTPC tab, you can create relationships between effects settings and game

parameters to produce unique effects driven by information coming from the game.

Making Magic

97

RTPC settings added to the Distance_to_Player game parameter

Using game parameters in conjunction with DSP effect settings opens up a whole

new world of dynamic content manipulation. You can use the game parameters in

conjunction with effects in the following ways:

• Add a slight flange to a rushing river sound to make it sound eerie, only from a

distance.

• Add stereo delay to all vocalizations when the player is about to die in combat,

based on health.

• Add tremolo to an air conditioner fan loop that changes,based on the rotation

speed of the fan.

Making Magic

98

Whether you're designing iconic spellcasting sounds that need to be instantly

recognizable or gaining diversity through recombination, the power of real-time

parameter control and dynamic DSP effects can create special effects that are only

possible within the environment of an interactive game world.

Making Magic

99

Unleashing Dynamic Synthesis

Another way to replace, augment, or supplement audio files is with the Wwise Synth

One plug-in. Synthesis provides a flexible and dynamic audio platform that doesn't

depend on system memory (RAM); it uses CPU to generate sounds at runtime

instead. Chances are good that you're already using synthesis as part of your sound

design process within a DAW. With the power of Wwise Synth One, synthesis can

become a part of your pipeline within the Wwise authoring environment.

Game Parameters, MIDI Messages, Modulator LFO, and Modulator Envelope can

be added as part of any Sound Object, Audio Bus, or Aux Bus RTPC and then used

to modify properties of Wwise Synth One, SoundSeed Whoosh, SoundSeed Air, or

any DSP plug-in. Being able to manipulate sound using synthesis at runtime gives

you greater flexibility to modify properties using parameters from the game or from

within the Wwise authoring environment.

Wwise Synth One

We'll begin by creating a magic_blast_synth_element that contains the Wwise Synth

One plug-in as part of the magic_blast_fire_blend created in Section 3.

Sound SFX containing the Wwise Synth One

plug-in inside the magic_blast_fire_blend

The Wwise Synth One plug-in can be added as an input source to a Sound SFX (or

Sound Voice) in the same way that the Silence plug-in was added in Chapter 1. To

begin, add a Sound SFX object to the default work unit by clicking the Sound SFX

icon in the Project Explorer toolbar. A new Sound SFX is created. Alternately, Sound

SFX can be created from the contextual menu or by using shortcut keys.

Making Magic

100

Creating a Sound SFX from the Project Explorer toolbar

After double-clicking to select the new Sound SFX, you can add the Wwise Synth

One plug-in using the Add Source menu in the Contents Editor.

Creating a Wwise Synth One source plug-in for a sound object

The Source Editor can be accessed in the Contents Editor by double-clicking the

plug-in icon.

Wwise Synth One plug-in icon

Making Magic

101

Wwise Synth One - Source Editor

Designer Note

Features of the Wwise Synth One plug-in are described in Chapter 8 -

MIDI & Synthesis

We'll begin by creating an additional synthetic element for the

magic_blast_fire_blend Blend Container that will play in addition to the audio

files already established earlier in this chapter. This element adds to the synthetic

characteristics of the sound and is modified using a Modulator Envelope on the

Output Level property of the Wwise Synth One plug-in. Additionally, Modulator

LFOs and the Distance_to_Player Game Parameter will be used to modify various

properties of the Wwise Synth One plug-in in conjunction with a Modulator

Envelope.

Now add the magic_blast_synth_element that contains the Wwise Synth One plug-in

inside the magic_blast_fire_blend created in Section 3.

Making Magic

102

Sound SFX containing the Wwise Synth One

plug-in inside the magic_blast_fire_blend

The magic_blast_synth_element will start out with a low base frequency and a

combination of Triangle and Square waveforms. Each Oscillator is then further

transposed and modified using the Distance_to_Player Game Parameter to increase

the transposition as the magical blast gets closer to the player.

Designer Note

You can find more information on Game Parameters in Chapter 1:

Setting the Ambient Stage - Introduction of a Day and Night Cycle

Establishing a Game Parameter.

Wwise Synth One Base Frequency and Waveform properties

Making Magic

103

Wwise Synth One Oscillator 1 & Oscillator 2 Transpose property RTPC

Modulators

Parameterizing properties throughout a Wwise project can become a powerful tool

for dynamic creation. Imagine modifying the pitch of the amb_tree_rustle ambient

emitter loop by randomizing the properties of a Low Frequency Oscillator (LFO)

or varying the length of an audio file by applying an Envelope with a randomized

decay time to the voice volume. In addition to Game Parameters, there are a suite of

Modulators that can be used to modify an object's properties. These include: LFOs,

Envelopes, and MIDI Messages.

Modulator LFO

The Modulator LFOs (Low Frequency Oscillator) can be used to create a modulation

of property values over time. When added to an RTPC, a Modulator LFO modifies

the values of a property between a range of values. Additionally, the values of the

LFO properties can be further parameterized or randomized to achieve a high-level

of variability.

Making Magic

104

To diversify the synth for the purpose of the magic_blast_fire_blend element,

a Modulator LFO added as an RTPC to each Oscillators PWM (Pulse Wave

Modulation) property gives the sound extra "movement" and vibration.

Wwise Synth One PWM (Pulse Wave Modulation) properties

attached to LFO (settings can be edited in the RTPC tab)

Designer Note

In Wwise, some properties are additive (Voice Volume, Voice Pitch,

and so on...), and some are exclusive. When adding an LFO on the

additive properties, the LFO modulation is added to the current value

of the property. When adding an LFO on the exclusive properties, the

LFO modulation replaces the current value of the property. Properties

modified by an LFO are represented by a dashed line ("-") in the Property

field.

Making Magic

105

Wwise Synth One Oscillator 1 showing the effective

range of the PWM property modulated by the LFO.

LFOs (Low Frequency Oscillator) are used to create modulation of property values

over time. The minimum and maximum RTPC values of the LFO Envelope in the

Sound Property Editor affect the base and top of the LFO (nil and peak values).

Swapping the min and max values effectively phase reverse the LFO.

The Modulator Editor can be access by double-clicking the Modulator LFO in the

RTPC dialog or by clicking the [...] button.

Accessing the Modulator Editor by double-clicking the

Modulator LFO in the RTPC dialog or by clicking the [...] button.

Making Magic

106

Modulator LFO Modulator Editor

The properties of the Modulator LFO are:

• Depth

• The amplitude variation of the oscillator (in percentage). Maximum amplitude

is 1.0.

• Default value: 100

• Frequency

• The number of cycles per second (in Hz).

• Default value: 1

• Waveform

• The shape of the modulator (sine, triangle, square, sawtooth).

• Default value: Sine

• Smoothing

• Low-pass filter over the waveform to smooth hard edges (in percentage).

• Default value: 0

• PWM (Pulse Width Modulation)

• The width of the pulse wave, only applies to the Square waveform (in

percentage).

• Default value: 50

• Attack

• The time it takes for the oscillator to reach full amplitude (in seconds).

• Default value: 0

Making Magic

107

• Initial Phase

• The initial phase of the oscillator waveform (in degrees).

• Default value: 0

• Scope

• Controls how LFOs are created:

• Voice: An instance of an LFO is created for every voice of the synth when

used in MIDI context.

• Note/ Event: An instance of an LFO is created for every playing instance of

the synth when used in MIDI context.

• Game Object: An instance of LFO is created for each game object instance in

relation to the game engine.

• Global: A single LFO is created for the whole project and used globally by all

instances.

• Default value: Voice

Designer Note

Additional information for working with LFOs can be found in the

Wwise Help Document: Wwise Help > Interacting with the Game >

Working with RTPCs > Working with LFOs

Additionally, Frequency Modulation (FM) between the two Oscillators is used to

"soften" the sound and helps it blend better with the sample based components of

the magic_blast_fire_blend.

Wwise Synth One FM (Frequency Modulation) property

Making Magic

108

The "FM Amount" property is further modified by an LFO Modulator.

Wwise Synth One FM Amount property RTPC

Designer Note

LFO objects can be created as Custom or ShareSet. Custom objects are

stored in-place, directly inside the object that has it. ShareSets are stored

in a separate work-unit and can be re-used across objects.

Modulation Envelope

You can control the amplitude envelope of the Wwise Synth One by adding an

Output Level RTPC modified by a Modulator Envelope. The Modulator Envelope

provides properties to modify the Attack, Decay, Sustain, Release (ADSR) in

addition to Attack Curve, Sustain Time. You can also use the Modulator Envelope

to stop playback with the envelope. Many of the properties of the Modulator can be

randomized and modified by RTPC.

Making Magic

109

From the RTPC Tab for the magic_blast_synth_element, use the Selector to add

the Output Level parameter which will be modified by a new Modulator Envelope

ShareSet.

Adding a Modulator Envelope to the Output Level RTPC

By default, the mode for the newly created Modulator Envelope is set to ShareSet.

Creating a new Modulator Envelope ShareSet

named Modulator_Output_Level_Magic

Making Magic

110

Designer Note

Envelope objects can be created as Custom or ShareSet. Custom objects

are stored in-place, directly inside the object that has it. ShareSets are

stored in a separate work-unit and can be re-used across objects.

Modulator Envelope Mode set to ShareSet

The minimum and maximum RTPC values of Modulator Envelope in the Sound

Property Editor affect the base and top of the ADSR envelope (nil and peak values).

Swapping the min and max values reverses the ADSR.

Making Magic

111

Editing the Envelope Modulator

The properties available to the Modulator Envelope are:

• Attack Time

• Defines the time taken for initial run-up of level from nil to peak, beginning

when the key is first pressed (in seconds).

• Default value: 0.2

• Attack Curve

• Adjusts the Attack Curve from its linear default slope (50%) to either:

• an exponential-style envelope (0%) where the rate of change starts slow and

then increases

• a logarithmic envelope (100%) where the rate of change starts fast, then

decreases

• Default value: 50

• Decay Time

• Defines the time taken for the subsequent run down from the attack level to the

designated sustain level (in seconds).

• Default value: 0.2

• Sustain Level

• Defines the level during the main sequence of the sound's duration, until the

key is released (in percentage of the range).

• Default value: 100

• Release Time

Making Magic

112

• Defines the time taken for the level to decay from the sustain level to zero after

the key is released (in seconds).

• Default value: 0.5

• Scope

• Controls how Envelopes are created:

• Voice: An instance of an Envelopes is created for every voice of the synth

when used in MIDI context.

• Note/ Event: An instance of an Envelopes is created for every playing instance

of the synth when used in MIDI context.

• Default value: Note/Event

• Trigger On

• The actions/MIDI events that may trigger the envelope (that is, enter the attack

phase):

• Play: either a play action or a MIDI note event

• Note-Off: only a MIDI note-off event

• Default value: Play

• Auto Release

• Determines if the envelope requires an action/MIDI event to exit the sustain

phase and enter the release phase. If set, the envelope exits the sustain phase

after Sustain Time. If not set, the envelope exits the sustain phase following a

certain condition:

• The envelope may be released by the game via a Release Envelope event.

• An envelope may also enter the release phase via a MIDI note-off event,

provided the envelope was triggered by a MIDI note-on event.

• Default value: False

• Sustain Time

• Defines the time which the envelope will remain in Sustain before the Release is

applied (in seconds).

• Default value: 0

• Stop Playback After Release

• If set, the playback of the associated sound is terminated after the release phase

is complete.

• Default value: false

Modulator Envelope Properties can be accessed using the Modulator Editor:

Designer Note

Additional information for working with Envelopes can be found in the

Wwise Help Document: Wwise Help > Interacting with the Game >

Working with RTPCs > Working with Envelopes

Making Magic

113

The combined power of synthesis, modulation, and parameterization is at its best

when used in conjunction with the dynamics of gameplay. With so many options

to modify and affect the properties of sound within the project, it is important

to understand the impact these can have on your platform's memory and CPU

performance.

A modulator's processing time depends on its RTPC usage. For most properties,

a modulator is evaluated once per audio sample. However, for the property voice

volume, the associated modulator is evaluated at every frame. Use modulators

selectively as they can consume a significant amount of a platform's memory and

CPU. Always work within the constraints of your target platform.

Making Magic

114

Magic Summary

The creative sound design process for magic and spell casting effects begins deep

within your own imagination. From there it extends from sound, to the microphone,

eventually ending up in the sound library where it can be assembled in a digital

audio workstation as the basis for the creation of fantastical effects. A further step

in this process is how the content is prepared for the eventual implementation.

Creatively combining, recombining, and dynamically manipulating sounds within

the authoring application using game parameters is a working methodology that

leverages the inherent interactivity of games as a medium. Coupled with the power

of synthesis, LFO, and Envelopes, the potential for the dynamic interaction between

gameplay and game sound can make a sound designer's dreams come true.

Throughout this chapter we have:

• Learned about summing and layering with the blend container.

• Changed perspectives based on distance using RTPC.

• Discussed the application and modification of effects.

• Created a Wwise Synth One element.

Stepped through the process of:

• Recombining sounds using the blend container.

• Using effects.

• Employing Real Time Parameter Control (RTPC).

• Leveraging blend tracks as part of a distance based perspective model.

• Creating a Modulator Envelope ShareSet.

Also touched on:

• Effects chain ordering.

• Audio bus sub-mixing of effects.

• Modulator LFOs.

Throughout this section we have created the following objects:

• A blend container called magic_blast_fire_distance_blend that uses a distance

game parameter to Crossfade between different perspectives of magic blast sounds.

• A Wwise Synth One element that augments the audio content in

magic_blast_fire_blend.

Making Magic

115

Magic Additional Resources

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Defining Object

Playback Behaviors > Defining the Contents and Behavior of the Blend Container

Wwise Help > Wwise Reference > Actor-Mixer Objects > Blend Containers

Video Tutorial - Creating Dynamic Sounds Using RTPCs

Wwise Help > Interacting with the Game > Working with RTPCs > Working with

LFOs

Wwise Help > Interacting with the Game > Working with RTPCs > Working with

Envelopes

Wwise Help > Wwise Source/Effect Plug-ins > Wwise Synth One > Wwise Synth

One Plug-in

http://www.youtube.com/watch?v=4tyuOmwF5EU&hd=1

116

Chapter 5. Dialogue Decisions and Language
Lessons

Overview .. 117

Getting Started with Dialogue and Non-Verbal Vocalizations 118

Adding Additional Languages ... 122

Dynamic Dialogue ... 124

Cinematic Dialogue Placement ... 126

Voice Summary .. 128

Voice Additional Resources ... 129

Dialogue Decisions and

Language Lessons

117

Overview

A single shriek of terror resonates through the forest, shaking dead leaves from the

branches of trees and setting birds to flight. What follows is an exchange of inhuman

grunts and growls followed by a plea for help.

From simple conversational interactions, to a fully branching multi-language epic

storytelling device, the art of dialogue production has become an exercise in asset

management and system integration of the highest order. With the escalating line

counts of modern console titles, voice over can quickly become a high quality

headache without a comprehensive localization strategy.

This chapter will take you through the process of:

• Getting started with voice.

• Preparation for Multi-Language support.

• Dynamic dialogue.

• Positioning and Panning.

Dialogue Decisions and

Language Lessons

118

Getting Started with Dialogue and Non-Verbal
Vocalizations

When working with dialogue you need to distinguish between spoken and non-

verbal dialogue. Spoken dialogue usually needs to be localized in different languages

whereas non-verbal dialogue represents the palette of emotional vocalizations not

usually translated. In the case of non-localized audio files, variations can be added

directly to a sound object, organized within the Actor-Mixer hierarchy, and added

to events just like any other sound effect. To handle these dialogue considerations,

the process for importing Voice assets into the project differs from music and sound

effects. The fundamental difference being the opportunity to determine project

languages in preparation for localization.

First you need to define the game project languages in the Language Manager located

in Wwise>Project>Languages menu. You also need to define the reference language

used throughout the project.

The reference language for the project is used in various situations:

• Importing language files - when you are importing an audio file, the import

conversion settings of the reference file are used.

• Converting language files - when you are converting a language file, the

conversion settings of the reference language can be selected.

• Before language files are available - when certain language sources are not ready,

the reference language can be used in their place.

Dialogue Decisions and

Language Lessons

119

Defining project languages in the Language Manager

After you have selected the languages, localized voice files can be imported either

through the Project menu, or by simply dragging and dropping files into the Project

window. Selecting Import as Sound Voice prepares the object for localization based

on project languages established in the Language Manager.

Dialogue Decisions and

Language Lessons

120

Importing dialogue as a Sound Voice in the Audio File Importer

After a Sound Voice has been imported in the reference language, additional

localized files can be added.

Adding an audio source for English language

A copy of the source audio files are then added to the project based on language.

By default these files are copied to the Originals/Voice location within the project

directory.

Dialogue Decisions and

Language Lessons

121

The folder hierarchy for copied Originals in the project Voices file folder

Dialogue Decisions and

Language Lessons

122

Adding Additional Languages

When localized language files are ready, they can be imported directly into the

project using the Audio File Importer.

To begin the process, first change the import mode to Localize Languages and set the

appropriate Destination language for localization.

Preparing to import localized voice files using the audio file importer

You can then select files or folders to be imported in the Destination language using

either the Add Files or Add Folders button.

Adding localized files to already existing voice objects

Once imported, the localized files appear in the Contents Editor for the associated

Sound Voice object.

Dialogue Decisions and

Language Lessons

123

Localized dialogue added to an existing Sound Voice

Dialogue Decisions and

Language Lessons

124

Dynamic Dialogue

There comes a point in every quest when the path splits, and a decision must be

made about how to proceed. The art of branching dialogue relies on the player

choosing from a list of possible interactions in order to move the conversation

forward. In addition to the potential outcome, you may want to carry forward the

history of past responses to characters during previous conversations.

At the center of Wwise’s Dynamic dialogue system is the dialogue event, which is

a set of rules or conditions that determines which piece of dialogue to play. The

dialogue event allows you to re-create a variety of different scenarios, conditions, or

outcomes that exist in your game. To ensure that you cover every situation, Wwise

also allows you to create default or fallback conditions.

All these conditions are defined using a series of arguments and argument values.

These arguments and argument values are combined to create argument paths,

which define the particular conditions or outcomes in the game. Each path is then

associated with a specific sound object in Wwise. As the game is played and dialogue

events are called, the game verifies the existing conditions against the paths defined

in the dialogue event. The argument paths that match the current situation in game

along with the mode, probability, and weighting of each path determine which piece

of dialogue is played, if any.

For example, the following dialogue event contains the arguments related to the

names of each player in a sports game. The values of each argument are combined to

create the different paths or conditions that may exist. In this particular example, the

commentator can use either the player's last name or full name.

Dialogue Decisions and

Language Lessons

125

To deal with situations where there are no argument values that match the current

situation in game, you can create a path with a default or fallback argument value.

These fallback paths contain one or more arguments instead of argument values and

are usually associated with a more general sound object. In the previous example, the

fallback argument path is associated with the sound object “he” instead of one of the

player’s names.

After you have re-created all the conditions in the dialogue event, it can be integrated

into the game engine. When the dialogue events are called by the game, the sound

engine resolves the dialogue event by returning the audio object that corresponds to

the matching argument path. The sound engine can then decide whether to insert

the audio object into a dynamic sequence for playback. The relationship between

returning an audio object and inserting it into a dynamic sequence does not have to

be 1:1. This means that for each resolved dialogue event, a returned audio object can

be added to the dynamic sequence as many times, as necessary.

Since the game engine uses the dialogue event name, you can create the events,

integrate them into the game and then build and fine-tune the contents of each

event without ever having to re-integrate them into the game again. This gives you

a great deal of flexibility to add or remove argument values, and to experiment with

different sounds, all without additional programming.

For more information on dynamic dialogue:

Wwise Help > Interacting with the Game > Working with Arguments > Overview

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue >

Understanding the Dynamic Dialogue System

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue >

Dialogue Events Tips and Best Practices

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue > Creating

Dialogue Events

Dialogue Decisions and

Language Lessons

126

Cinematic Dialogue Placement

Several examples are helpful to have a clear picture of how dialogue should be

handled positionally in games. Linear media, such as film and television, can help

guide the way we present dialogue for the screen, but doesn’t accommodate the

entire scope of concerns when it comes to handling interactions that are presented

dynamically.

With cinematic conversations usually anchored in the front speakers during sections

of the game where control is taken from the player, setting the position of dialogue

during these sequences to 2D will appropriately manage their placement. By default,

2D objects are only played through the front left/right speakers for sound objects

without any propagation behaviors. Adding a percentage of the center channel allows

for an additional level of control.

Cinematic dialogue set to 2D with 80% center channel volume

In situations where the player is present during the delivery of gameplay dialogue

and able to move throughout the world, it may be necessary to play the dialogue

positionally in 3D. Simply subscribing an attenuation to a Sound Voice with the

game object at the location of the character speaking the line will apply the specified

volume reduction based on the defined attenuation. This case allows for situations

where you are free to move about while dialogue is spoken by characters positioned

in the game world.

Adding realism to positioned in-game dialogue doesn’t have to end with volume

attenuation. As described in the campfire example in the Ambient chapter, most

voices could benefit from the addition of a spread across adjacent speakers at close

distance. Taking the implementation a step further, the addition of cone attenuation

could be used to focus the direction of the sound controlled by the orientation of the

Dialogue Decisions and

Language Lessons

127

game object, or in this case the mouth of the character speaking. Applying a cone

attenuation allows for the attenuation and filtering of the sound as the listener moves

outside of, or behind, the oriented game object. This simulates the obstruction of the

character’s head on the spoken line of dialogue.

Programmer Note

The OrientationFront vector defines the direction that the listener's head

is facing. It should be orthogonal to the OrientationTop vector, which

defines the incline of the listener's head. For a human listener, one could

think of the OrientationFront vector as the listener's nose (going away

from the face), while the OrientationTop vector would be orthogonal to

it, going between the listener's eyes and away from the chin.

Introducing additional techniques for simulating realism with dialogue are worth

investigating, but knowing whether the dialogue being delivered is critical to the

game play can quickly determine how much realism can be used. If, for instance,

it’s important that the player hear the secret to subduing the dragon, then realism

should not get in the way of delivering the dialogue by obstructing it with filters or

volume attenuation. Ideally every conversation in the game needs to be built along

the fine line between realism and storytelling to deliver, coupled with game play, an

immersive conversational experience to the player.

Dialogue Decisions and

Language Lessons

128

Voice Summary

As games continue to grow into their role as a storytelling medium, there are few

devices available greater than the human voice in its ability to convey emotion and

establish character. Whether you're dealing with non-verbal communications or

building complex trees of conversational outcomes, there exists a suite of tools

designed for the express purpose of integrating dialogue within the flow of gameplay

in Wwise.

Throughout this chapter we have:

• Discussed getting started with voice.

• Differentiated between verbal and non-verbal vocalizations.

• Established a methodology for localizing dialogue.

• Discussed the role of dialogue positioning in different scenarios.

Stepped through the process of:

• Importing sound voice objects for English language dialogue files.

• Importing localized language dialogue files using the Audio File Importer.

• Adjusting the percentage of center channel contribution for 2D positioned sounds.

We've also touched on:

• Using arguments to creating branching dialogue.

Throughout this section we have created the following objects:

• Spoken dialogue sound voices in the English language and localized in French.

Dialogue Decisions and

Language Lessons

129

Voice Additional Resources

Wwise Help > Interacting with the Game > Managing Dynamic Dialogue

Wwise Knowledge Base - Does Wwise provide support for integrating a lip-sync

solution?

Wwise Knowledge Base - Importing a large number of files in Wwise

Video Tutorial - Managing Voices and Language Localizations

http://kb.gowwise.com/questions/122/Does+Wwise+provide+support+for+integrating+a+lip-sync+solution%3F
http://kb.gowwise.com/questions/122/Does+Wwise+provide+support+for+integrating+a+lip-sync+solution%3F
http://kb.gowwise.com/questions/133/Importing+large+number+of+files+in+Wwise
http://www.youtube.com/watch?v=Sq-Rg5QkQTY&hd=1

130

Chapter 6. Unlocking the User Interface

Overview .. 131

Creating a Simple Menu Select Sound .. 132

Defining 2D Sound Positioning .. 134

The Complex Negotiation of Pause ... 135

Pause - Defining the Scenario ... 135

Pausing the Game .. 136

Resuming the Game .. 137

User Interface Summary .. 139

User Interface Additional Resources .. 140

Unlocking the User Interface

131

Overview

The User Interface is often the hub around which the game world is created. Creating

a solid experience with sound begins with the ability to understand the interface flow

and how sound can be used to reinforce the aesthetic, without breaking immersion.

This chapter will take you through the process of:

• Creating simple menu events.

• 2D positioning and panning.

• Creating complex events.

From the simple playback of exactly the right sounds, to the complex negotiation

that happens when pressing pause, the User Interface is a case study in the solutions

and techniques available within the Wwise authoring application.

Unlocking the User Interface

132

Creating a Simple Menu Select Sound

Let's create a Sound SFX for a menu_select sound which will be played whenever

a menu selection is confirmed. Start first by importing the menu_select file, either

using the audio file importer or by dragging and dropping from the source folder

into the default work unit.

menu_select sound object

Creating a Simple Menu Select Event

By selecting the Sound SFX and entering the contextual menu we can immediately

create a play event for this sound:

Creating a play event from the contextual menu of a sound object

This results in the following event:

Play_menu_select event

Unlocking the User Interface

133

The event name Play_menu_select can now be passed to the programmer who will

post the event for each time an item in the menu is selected.

Programmer Note

Events are triggered by calling AK::SoundEngine::PostEvent()

Unlocking the User Interface

134

Defining 2D Sound Positioning

With most visual aspects of the menu displayed on a two-dimensional plane, it's

common to also ignore 3D positioning for a sound object and instead manually

control the positioning in 2D. Wwise enables direct control over 2D positioning of a

sound object from the positioning tab in the Project Explorer.

2D Position editor

By switching the positioning to 2D you gain control over the sound's position

through the use of the 2D panner interface and also via a percentage parameter for

the center channel that sends a contribution of the sound to the center speaker.

Programmer Note

Usually, UI events are triggered from a global game object (a game object

without positioning info)

Of primary concern when scoring for the user experience is the feel and aesthetic of

the sound itself. While there is always room to use advanced techniques to achieve

certain effects, the role of sounds that help to provide feedback to the user are usually

much more difficult to design than they are to implement.

Unlocking the User Interface

135

The Complex Negotiation of Pause

While the playback of discrete sounds may end up being quite simple, there is often

a complex series of interactions that need to take place during the transition from

gameplay to the menu. It is expected that at any point during gameplay that the

pause button can be pressed, allowing for the swift transition from in-game to in-

menu actions.

For this to appear seamless from the sound perspective, several things should

happen:

• Music playing in-game should be muted, paused, or allowed to play through the

menu.

• In-Game sound effects should be paused, stopped, or muted.

• In-Game ambient sound should be muted, paused, or allowed to play through the

menu.

• Non-critical dialogue should be paused or stopped.

• Critical dialogue should be either paused or restarted.

• Menu music or ambient sound could be played.

At first glance, this list of actions may seem outside the scope of what would

normally be available to the sound designer; however, the event system allows

for these decisions to be controlled and manipulated from within the authoring

application. Wwise events can apply actions to the different structures within your

project hierarchy. Each event can contain one action or a series of actions. The

actions you select will specify whether the Wwise objects will play, pause, stop, and

so on.

A complete list of event actions can be found in the help documentation:

Wwise Help > Wwise Reference > Events > Event Editor

Wwise Help > Where to Begin? > Wwise Fundamentals > Understanding Events >

Action Events

Wwise Help > Interacting with the Game > Managing Events > Overview > Types of

Event Actions

Pause - Defining the Scenario

Let's take a scenario where we specifically want to:

• Pause all music, ambient, sound, and voice.

• Play a transitional sound effect.

• Loop a piece of menu specific music.

Unlocking the User Interface

136

Designer Note

In the case of multi-player or persistent worlds that carry on while one

user is paused, there is also the ability to mute the audio.

Ideally, from a simplified perspective and likely that of the programmer, only two

events need to be communicated: Pause Audio and Resume Audio. The sound

behavior that happens when each of these is posted by the programmer can be

specifically determined by the sound designer. To make things easy in the example,

we are going to pause based on busses contained in the Master-Mixer Hierarchy.

Pausing the Game

The following event shows each level of the mix hierarchy using the pause action

with each object receiving a 1.5 second fade out:

Pause event showing event actions

Event Action Object Location

Unlocking the User Interface

137

Pause Music_System (Interactive Music)

Pause World_Sound (Master Audio Bus)

Pause Voice_Non_World (Master Audio Bus)

Play Menu_Music (Interactive Music)

Play Menu_Transition (Actor-Mixer)

Additionally, the menu_music and menu_transition use the play action

simultaneously.

Resuming the Game

When we resume the game, we only need to use the resume action on the paused

busses of the Master-Mixer hierarchy in order to continue playing everything back

from the point at which they were paused. Simultaneously we will use the stop action

on menu_music with a 1.5 second fade out, and play the menu_transition sound

again:

Resume event showing event actions

Unlocking the User Interface

138

Event Action Object Location

Resume Music_System (Interactive Music)

Resume World_Sound (Master Audio Bus)

Resume Voice_Non_World (Master Audio Bus)

Stop Menu_Music (Interactive Music)

Play Menu_Transition (Actor-Mixer)

The important take away from this example is that with just two Wwise events you

can control all of the sound for the game. Using event actions, the audio experience

for transitioning from gameplay to pause and back again can be authored according

to the desires of the sound designer.

Unlocking the User Interface

139

User Interface Summary

Implementing the sound in your user interface can be as simple or complex as

necessary in order to support the feel and aesthetic. Simply put, the sound should

serve as an extension of the experience; whether navigating through or transitioning

between gameplay and the menu system, everything should support the artistic

scope. Wwise puts the decisions into the hands of the sound designer by allowing for

the finer details of interaction to be managed through the event system.

Throughout this chapter we have:

• Reviewed importing sound files.

• Discussed the role of User Interface sounds to support game aesthetic.

• Outlined some of the complexities inherent with pausing and resuming.

Stepped through the process of:

• Creating a simple Event for menu selection.

• Defining 2D sounds using the Position Editor.

• Creating pause and resume Events.

Also touched on:

• Different types of Event actions.

Throughout this section we have created the following objects:

• A simple menu select Sound SFX and event.

• Pause and resume events.

Unlocking the User Interface

140

User Interface Additional Resources

Wwise Help > Interacting with the Game > Managing Events > Overview > Types of

Event Actions

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Defining

Positioning for Sound and Motion

Video Tutorial - Creating Events

http://www.youtube.com/watch?v=JCKhspCw-K4&hd=1

141

Chapter 7. Adventures in Music

Overview .. 142

Starting With the Interactive Music Hierarchy .. 143

Preparing the Content ... 143

The Horizontal Approach ... 144

Creating the Ambient Music Segment .. 144

Grooming the Tracks ... 147

Dynamic Danger ... 149

Adding RTPC to Tracks ... 149

Auditioning RTPC ... 151

Looping a Music Segment ... 152

Section Summary .. 152

The Vertical Approach ... 153

Groups and Behaviors ... 153

Sequencing Groups in the Music Playlist Editor ... 154

Section Summary .. 156

Using States to Switch Between Music Types .. 157

Defining Interactive Music Transitions ... 159

Authoring Transitions .. 160

Defining Transition Behavior .. 160

Transitioning from Ambient to Action Music ... 161

Transitioning from Action to Ambient Music ... 163

Section Summary .. 165

Music Summary .. 166

Music Additional Resources .. 168

Adventures in Music

142

Overview

Heroic journeys are usually accompanied by the thundering of trumpets and fanfare,

but several hours of steadily looping brass wouldn't scale across a single piece of

music. Interactive and dynamic music in games continues to evolve as an art form

in its own right. Complex techniques such as authoring sync points, defining time

signatures, and preserving the musical entry and exit points can now be specified

from within the authoring application to create a complex fabric of composition

created specifically for the medium of games. With such potential comes the ability

to tailor the music to support gameplay and the player experience.

The first consideration when choosing an implementation strategy for a music

system begins with matching the emotional scope and intent of the game

with appropriate music. By nature, systems are adaptable and varied, but the

basic thematic intent should create a seamless blend between the game and its

implementation. Once the mood has been established, it's time to begin thinking

about how to support gameplay and then how to shape compositional elements into

building blocks that will become the emotional river running throughout the game.

This chapter will take you through the process of:

• Starting with the Interactive Music Hierarchy.

• Preparing the Content.

• The Horizontal Approach.

• The Vertical Approach.

• Switching Between Music Types.

• Defining Interactive Music Transitions.

Adventures in Music

143

Starting With the Interactive Music Hierarchy

What is the Music Engine?

The music engine is the high-level engine that handles complex, high-level

scheduling of music segments of the interactive music hierarchy. The fundamental

difference between the Interactive Music and the Actor-Mixer hierarchies is the use

of tempo and time signature to rule the behaviors of the different music containers.

Audio files added to the Interactive Music hierarchy are imported as Music Segments

and can also be added as tracks within a music segment. Segments can then be added

to Music Playlists Container or Music Switch Container in order to add additional

functionality.

To view the music specific functionality of containers in the Interactive Music

hierarchy, the Layout must be changed to Interactive Music.

Changing to the Interactive Music layout

Preparing the Content

Before beginning the integration of music content into the project, the content

must first be prepared for the type of system that’s going to be used. Throughout

this section we’ll walk through two ways of presenting dynamic music that will

end up working together to provide an emotional backdrop to the hero’s quest. By

leveraging both a Horizontal approach (where the volume of time-synced music

layers reacts to gameplay) and a Vertical approach (which adds diversity to a looping

section of music through randomization) we’ll create a simple music system that

changes based on player interaction with the game.

Adventures in Music

144

The Horizontal Approach

During a walk through the forest, the music helps to set a serious and foreboding

tone as we quest to adventures unknown and dangers hidden just beyond sight.

In an attempt to keep the music fresh, varied, and dynamic, the introduction of a

horizontal layering approach modified based on the players proximity to danger will

be instituted. This parameter is passed from the game engine based on the player

distance to an enemy or location and is used to increase the musical intensity during

gameplay.

The musical content for the horizontal implementation has been prepared as ten

tracks of layered audio that is intended to play back in sync within a single music

segment.

Creating the Ambient Music Segment

Adding a child Music Segment to the Default work unit in the Interactive Music

hierarchy called Ambient_Horizontal will begin the process of establishing the

ambient music system.

Creating the Ambient Horizontal segment for the horizontal music system

The music files can now be imported as tracks in the segment by either using the

Audio File Importer for the segment or dragging and dropping it over the Music

Segment.

Adventures in Music

145

Importing Music Tracks to a segment using the Audio File Importer

Once files have been added as tracks to the segment, you can access them through

the Music Segment Editor, where tracks can be arranged and edited within the Music

Segment.

Editing tracks in the Music Segment Editor

Adventures in Music

146

The basic component of a track is called a clip, a rectangular area representing a

single .wav file. You can adjust when a clip plays by dragging it left or right along its

track. You can move clips from one track to another by dragging them up or down.

You can also overlap clips on a single track. You can make a clip shorter by dragging

one of its handles inwards, or extend it by dragging the handle outwards. When

you extend a clip, it repeats itself. Each repeat is called a loop. Loop points can be

identified by a vertical dashed line in the clip.

Loop points represented by a vertical dashed line in the clip

Cues and cursors are also part of the Music Segment Editor. Cues are markers

appended to segments to indicate key points, such as its entry and exit points.

Adjusting Entry and Exit cues in the Music Segment Editor

You can also create custom cues to indicate when property changes or transitions

should occur, or when stingers should be played. The play cursor moves along as you

play a segment, but you can also move it to control where playback begins. The end

cursor marks the end of the segment.

Adventures in Music

147

The time settings for a segment, which is inherited by any tracks held within a

segment, can be specified under the general settings tab. Segments can inherit the

time settings of their parent containers, as well as override them for further timing

control.

Settings for Tempo, Time Signature, or Grid based measurement

The tempo for this multi-layered music is 120 BPM with a 4/4 time signature. Once

the time settings have been defined for a segment and its tracks, the ability to use

the Snap to functionality in the Music Segment Editor gives a more precise level of

control when adjusting clips, cursors, or cue markers.

Setting the Snap to functionality in the Music Segment Editor

Grooming the Tracks

We can now add and adjust any cues or clip handles in order to prepare this ambient

segment for use throughout the rest of the music system.

First, there are several percussion tracks (timpani, bass drum, and tubular bells)

which can be extended (looped) to match the duration of the cymbals track. This can

be accomplished by clicking and dragging on the blue clip handle at the bottom right

of each track and matching the approximate length of the target track duration.

Using the clip handle to loop and extend the duration of a track

Adventures in Music

148

Next, adjust the entry cue to the first beat of the timpani by holding the Ctrl key

and moving the cursor without moving the segment. This defines the entry cue

of the segment and will ensure that any music transitioning to the ambient music

segment will start on beat. The area to the left of the entry cue is the pre-entry area

of a segment. The pre-entry area may or may not be played in game, depending on

transition settings.

Entry cue moved to the first beat of the timpani

Next, adjust the exit cue by dragging the exit cue cursor to the last beat of the

timpani. This defines the exit cue of the segment. The area to the right of the exit cue

is the post-exit area of a segment. The post-exit area may or may not be played in

game, depending on transition settings.

Positioning the exit cue

Adventures in Music

149

Dynamic Danger

Now that entry and exit points have been established and a final duration for the

ambient music has been set, it's time to set up volume based dynamics driven by

potential danger. While the implementation of danger on the game side might

include a value attached to each deadly forest creature which would then be passed

to the audio engine, this feature can be auditioned directly within the authoring

application.

The process begins with the creation of a game parameter called Danger in the game

syncs tab of the Project Explorer.

Creating a Danger parameter to be used by the ambient music system

The Danger parameter will be used in conjunction with a volume RTPC for several

tracks in the ambient system. Additional track properties are also configurable using

RTPC such as: States, Effects, and Positioning as well as setting different busses,

priorities, and limiting.

Adding RTPC to Tracks

The intention in the multi-layered ambient system is to drive intensity by using

volume in conjunction with several key tracks within the segment, specifically: Bass

Drum, Cymbals, French Horn, Male Choir, and Trombones.

Double clicking the RTPC icon for the Bass Drum track opens up the RTPC tab for

the track, where volume can then be added and associated with the Danger game

parameter.

Adventures in Music

150

Accessing the property editor via the RTPC icon

Adding volume adjustment in conjunction with the

Danger game parameter for the Bass Drum track

Adventures in Music

151

These same changes can be applied to additional tracks so that as the Danger

parameter increases, additional instruments fade up and reveal layers of musical

intensity.

Completed ambient music system showing tracks with RTPC enabled

Auditioning RTPC

Auditioning changes can be done either using the game parameter cursor in the

RTPC view or through the RTPC tab in the Transport Control.

Auditioning RTPC with the game parameter cursor

Adventures in Music

152

Auditioning RTPC from the Transport Control

Looping a Music Segment

Looping a Music Segment within the Interactive-Music hierarchy can be done by

parenting the segment in a playlist container and managing its looping properties

within its group. Once it’s been added, the properties for looping can be found in

the default group loop count. Clicking the down arrow changes the loop count to

infinite, ensuring that the group will continue to play the segment until it is stopped

by the audio system.

Setting the loop count to infinite playback

Designer Note

Do not confuse looping segments with looping audio clips inside

segments. An indepth look at the difference between approaches can be

found in the Wwise Knowledge Base: Looping and streaming of audio

clips and interactive music .

Section Summary

Throughout this section we have worked to create a dynamic loop of music that

responds to the level of danger present in the game. Through the use of layering and

real time parameter control, in conjunction with volume adjustment, this looping

section of exploration music now reflects the hero's journey.

http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music
http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music

Adventures in Music

153

The Vertical Approach

With a dynamic horizontal system in place to handle music during the exploratory

section of gameplay, there must also come a time when the battle begins. In the case

of the triumphant hero, the vertical approach will increase intensity level through the

use of an action specific piece of music. In order to introduce a bit of randomness

into the loop, the action music will be broken into two sections with variations, and

a bridging segment within the playlist. We’ll build these within the Music Playlist

Container using groups.

Groups and Behaviors

The first step in the process begins with the creation of a Music Playlist Container

that will represent the looping action music in the system.

Creating the action music loop playlist

Next, import the wav files that will be used. By default these will be added to the

Music Playlist Container as segments that can be further arranged within the Music

Playlist Editor.

Adding the action music wav files to the Music Playlist Container

Adventures in Music

154

Now that action music segments have been added to the project, they need to be

dragged and dropped into the Music Playlist Container. Once added, they can be

assembled into groups for further arranging. The playlist determines which objects

will be played in what order when the playlist container is called by the game engine.

The four types of groups and segments available are:

• Sequence continuous: Plays all music objects in the group in sequential order each

time the group is played.

• Sequence step: Plays only one music object in the group each time the group is

played. The next time the group is played, the next music object in the group is

played.

• Random continuous: Plays all music objects in the group one after the other in

random order each time the group is played.

• Random step: Plays only one music object in the group selected randomly each

time the group is played.

Additional randomization types, weighting, and repetition variables can be accessed

in the Music Playlist Editor.

Variables for grouping segments and playback

properties in the Music Playlist Editor

Sequencing Groups in the Music Playlist Editor

The action music files are broken into 3 different themes: A, B, C.

Themes can be arranged together by creating groups in the Music Playlist Container.

In this case, taking the two Action Theme A variations, the only Action Theme B

variation, and the three Action Theme C variations and sequencing them to create a

varied action loop.

Start by creating a new group that will play as a random step and drag in the two

Action Theme A variations.

Adventures in Music

155

Creating a new continuous random group for Action Theme A

Next, use the Action Theme B segment as a bridge between the two randomized

groups created with the Action Theme A and C segments. Action Theme B can be

dragged in and positioned within the parent sequence continuous group using the

red indicator as a guide to its positioning.

Arranging Action Theme B in sequence with the Action Theme A random group

Finally, Action Theme C will play as a random step for one of the three variations

within its own group.

Creating a new random step group for

Action Theme C and arranging it in sequence

Adventures in Music

156

Setting the parent sequence container to loop count infinite will cause the sequence

to repeat itself until a change is called by the audio engine.

Setting the playlist container loop count to Infinite

There should now be two playlists containers: one for ambient music and another for

action music.

Playlist containers for ambient and action music

Section Summary

Here we have tackled the creation of looping action music that is randomly

assembled using playlists of segments. The added sequencing of different segment

types helps to give definition, progression, and drama to the unfolding music.

Adventures in Music

157

Using States to Switch Between Music Types

Now that different types of music have been established for different scenarios, the

next step is to integrate them so they can react to changes in gameplay. This can

be done by introducing States (or game states) that can be used to switch between

music containers, in addition to affecting other aspects of sound or music.

The process of creating a music switching system begins by defining states that

will be communicated from the game and used to switch between different types

of music, in this case: action and ambient music. States represent changes in the

game that affect the properties of existing sounds, music, or motion on a global

scale. The music switch container operates on the same fundamental principal as

the switch container in the Actor-Mixer hierarchy. The addition of time and tempo

functionality allows for musical transitions when switching between containers.

Creating gameplay states to switch between music types

Parenting the already existing ambient and action music loop playlists in a music

switch container allows for the application of the newly created gameplay state

group.

Creating a music switch container using the

gameplay state with a default state of ambient

Music playlist containers can now be assigned to each of the states in the Music

Switch Container Association Editor either by dragging and dropping them from the

hierarchy or using the Selection button.

Adventures in Music

158

Assigning music playlist containers to states in

the music switch container association editor

Now that the simple assignment of music playlist containers to states has been

established, the default transition between music types can be auditioned via states

in the transport control.

Auditioning music changes based on states

Adventures in Music

159

Defining Interactive Music Transitions

In order to gain more control over the way music segments and music playlist

containers transition, the music switch container provides the ability to author

specific transition behavior.

The Transitions tab is where you define the transitions between music objects within

either music playlist or music switch containers. A transition is a musical behavior

you can define to be used when switching from the music object currently playing

to another. Each transition has a source and a destination. An additional segment,

called a transition segment, can be used as a musical bridge between the source and

destination.

The Transitions tab contains the Transition Matrix, which allows you to create a

set of rules that define how each object transitions to every other object within the

container. You can create explicit rules for each object, or more general rules that

apply to more than one object. The default Any to Any transition rule applies to all

remaining undefined transitions.

The list of transitions is displayed in the Transitions tab in descending order. When

a transition is needed, Wwise begins searching at the bottom of the list until it finds

one that applies to the situation at hand. If no matching transition is found, Wwise

uses the default Any to Any transition.

The Transitions tab and Transition Matrix

Adventures in Music

160

Authoring Transitions

We’ll begin by adding explicit transition segments in order to move musically from

the ambient loop, to the action loop, and back again. This can be accomplished by

adding a new transition to the transition matrix and defining its behavior, starting

with the transition from the Ambient Music Loop playlist to the Action Music Loop

playlist.

First add a new transition using the Add button.

Adding a new transition to the transition matrix

Next drag and drop the source and destination music objects, in this case the

Ambient Music Loop playlist (Source) and the Action Music Loop playlist

(Destination).

Dragging and Dropping music objects to the transition matrix

Defining Transition Behavior

Transition behavior between the source and destination can now be authored,

specifically: exiting the source, entering the destination, and the specifying of any

transitional segment.

By default, a transition is a simple change from one music object to another. The real

power of transitions appears when you customize the source and destination to make

a unique musical passage. By setting source and destination properties, you can make

a transition between objects sound both smooth and musical.

To give you additional control and flexibility over the transitions between objects,

you can choose from a number of different exit and entry points for the source and

destination respectively.

Adventures in Music

161

There are many potential options associated with exiting the source:

• Immediate: The source stops playing immediately.

• Next Grid: The source stops playing at the next grid interval. The grid is an

arbitrary method by which music objects can be virtually partitioned.

• Next Bar: The source stops playing at the next bar.

• Next Beat: The source stops playing at the next beat.

• Next Cue: The source stops playing at the next cue, whether it be a custom cue or

the exit cue.

• Next Custom Cue: The source stops playing at the next custom cue. If the current

music segment doesn't contain a custom cue, Wwise continues to the next

segment until it finds a custom cue.

• Exit Cue: The source stops playing at the exit cue.

Transitioning from Ambient to Action Music

Transitioning at the next beat will suit the purpose of moving quickly from ambient

to action music and so specifying Next Beat in the Exit Source window will

accomplish this.

Defining the source exit source

By default the source transition is set to play the post-exit of the source during the

transition, however, the post-exit of a source will only play if that source exits at its

exit cue, or fades out at or beyond its exit cue. Otherwise, the post-exit will never

play during a transition.

In this transition we also want to end playing with a fade-out. This can be

accomplished by selecting Fade-out and pressing edit to enter the Music Fade Editor.

Adventures in Music

162

Adding a source fade-out in the music fade editor

The Music Fade Editor is where you can define the properties of each individual fade

used when transitioning from one music object to another. This includes fade-ins

for destination objects, fade-outs for source objects, and fade-ins and fade-outs for

transition segments. You can define the length and offset of each fade, as well as the

curve shape to further customize the transition.

For the example, it has been determined that a two second fade with a one second

offset using a steep convex curve will allow the ambient music to fade quickly out

and sound natural as it transitions to the action music playlist.

Adventures in Music

163

Specifying the fade settings for the ambient to action music transition

Auditioning the transitions can be done in the same way as outlined previously.

Transitioning from Action to Ambient Music

Handling the transition from the action music to ambient requires special handling

because of the looping nature of the action playlist, and also in order to capitalize on

the dramatic intent signaled by the end of the action music.

At times, a transition sounds better if another piece of music plays over the end

of the source and the beginning of the destination. This bridging piece of music is

called a transition segment, and you can use one for any transition in Wwise. The

following illustration shows how a transition segment is played between the source

and destination of a music transition.

Adventures in Music

164

You can also use any combination of the pre-entry and post exit areas of the source,

destination, and transition segments to create even more seamless transitions.

In order to bridge the transition from the Action Music Loop playlist (Source) back

to the Ambient Music Loop playlist (Destination) the addition of the Action Theme

End must be used as a transition segment as part of a new transition in the transition

matrix.

Adventures in Music

165

Specifying a transition segment between the Action Music Loop

playlist (Source) and the Ambient Music Loop playlist (Destination)

Section Summary

Handling the delicate relationship and transitioning between music playlist

containers and segments is one of the cornerstones of providing a seamless musical

experience to the player. With the introduction of switching based on game state and

the inclusion of a transition segment serving as a bridge between action and ambient

loops, the music is allowed to naturally progress and respond to the game.

Adventures in Music

166

Music Summary

This chapter illustrates a very simple state based music system that operates both

horizontally and vertically, based on intensity, and vertically, based on game state.

The use of tempo based transitions helps keep the music in-sync across state changes,

while the amount of Danger dynamically controls the volume of different ambient

music tracks. The combination of these techniques results in a musical soundtrack

that is customized to the player’s experience.

Throughout this chapter we have:

• Discussed the role of interactive and dynamic music in games.

• Discussed the use of different types of implementation strategies.

• Talked about preparing music content for integration.

• Compared the Interactive Music hierarchy with the Actor Music hierarchy.

• Established the use of music segments, music playlist containers, and music switch

containers.

Stepped through the process of:

• Creating a music implementation based on the Horizontal Approach using RTPC

to control the dynamics of the ambient music:

• Creating music segments.

• Adjusting track lengths.

• Looping music tracks.

• Adding music segments to music playlist containers.

• Looping a playlist.

• Creating game parameters.

• Modifying music track volume based on RTPC.

• Creating a music implementation based on the Vertical Approach using a playlist

to randomly recombine action music segments.

• Switching between music based on state:

• Defining the transition matrix between source and destination.

• Defining transition behavior.

• Setting variables for exiting a source.

• Using the music fade editor.

• Defining a transition segment.

We've also touched on:

• Working in the Interactive Music Layout.

Throughout this section we have created the following objects:

• A music system switch container that switches between ambient and action music

based on game state.

Adventures in Music

167

• A looping ambient music playlist container which includes an ambient music

segment and ten tracks of music with volume RTPC based on the danger game

parameter.

• A game parameter used to simulate danger.

• A playlist container which includes music segments that are randomized to create

a seamless loop of action music.

• An action music theme ending used as a transition segment when switching from

the action to ambient state.

Adventures in Music

168

Music Additional Resources

Wwise Knowledge Base - Advanced settings playback limits and interactive music

Wwise Knowledge Base - Looping and streaming of audio clips and interactive music

Wwise Knowledge Base - Understanding the Interactive Music Engine

Wwise Knowledge Base - Interleaved Streaming in Interactive Music

Wwise Knowledge Base - Using States with the Interactive Music Hierarchy

Video Tutorial - Creating Interactive Music Structures

Video Tutorial - Defining Interactive Music Transitions

Video Tutorial - Creating Stingers

Game Sound Design - Making Music Interactive: Elaboration of the Feature Set in

Wwise

Game Sound Design - Dynamic Music Creation Using Wwise

http://kb.gowwise.com/questions/204/Advanced+settings+playback+limits+and+interactive+music
http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music
http://kb.gowwise.com/questions/176/Understanding+the+Interactive+Music+Engine
http://kb.gowwise.com/questions/179/Interleaved+Streaming+in+Interactive+Music
http://kb.gowwise.com/questions/177/Using+States+with+the+Interactive+Music+Hierarchy
http://www.youtube.com/watch?v=Zvnt3tbL3OU&hd=1
http://www.youtube.com/watch?v=STAdQwgDYHQ&hd=1
http://www.youtube.com/watch?v=fLrz463kVEI
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/in-depth-creation-of-dynamic-music-in-a-video-game.html

169

Chapter 8. Adventures in MIDI

Overview .. 170

Importing MIDI Files .. 171

Section Summary .. 175

Setting up Wwise Synth One .. 176

Adventures in Synthesis ... 177

Section Summary .. 180

Connecting MIDI & Sound ... 181

Importing the Individual MIDI Tracks ... 181

Music Segment MIDI Properties ... 183

Sound Object MIDI Properties ... 184

Section Summary .. 187

MIDI Summary ... 188

Music Additional Resources .. 189

Adventures in MIDI

170

Overview

The hero lies in wait for the winds of change to blow their favorable tidings across

the wind-swept field of battle. He seeks knowledge from the oracle, the all-knowing

eye of history, brimming with stories of the old days - tales of long-forgotten alchemy

and strategies that could help reclaim his position as the rightful heir to the throne.

Equipped with an understanding of these ancient ways, there can be no failure- he

has the tools at hand and the power of the past to create the ultimate good.

A comprehensive pipeline to utilize MIDI (Musical Instrument Digital Interface)

in conjunction with synthesis and sound samples is a powerful combination. The

standardized MIDI format is at the heart of every modern DAW (Digital Audio

Workstation) and serves as an interoperable format that communicates note,

velocity, and other control information for playback. This data can be mapped to

sound samples or synthesizers within Wwise to create efficient workflows for music

or sound design. The power and flexibility of MIDI is well documented as part of a

DAW workflow and the benefit of this format is available within Wwise.

This chapter will take you through the process of:

• Importing MIDI Files

• Adding MIDI Files to a Music Track

• Making Modifications to the MIDI Target

• Adjusting the MIDI Clip Tempo

• Understanding Wwise Synth One - Features & Functionality

Adventures in MIDI

171

Importing MIDI Files

Importing MIDI files can be achieved using the same processes outlined in Chapter

1 (Setting the Ambient Stage: Building the Foundation - Importing Audio Files).

MIDI files added to the Interactive Music hierarchy are imported as Music Segments

and can also be added as tracks within any existing music segment. The MIDI file

includes all of the messages that specify notation, pitch, velocity, and other control

information. After the MIDI file has been established in the Wwise Project, it can be

replaced or edited like any audio file.

To view the music specific functionality of containers in the Interactive Music

hierarchy, you need to switch to the Interactive Music layout.

Switching to the Interactive Music Layout

MIDI Files can be imported in any of the following configurations:

• One MIDI file containing all tracks, with each track assigned to a unique MIDI

Channel (1-16)

• One MIDI file for each track, with each track assigned to a unique MIDI Channel

(1-16)

• One MIDI file for each track, with each track assigned to the same MIDI Channel

(1)

MIDI files can be imported as Music Segments or as tracks within an existing Music

Segment by either using the Audio File Importer or by dragging and dropping them

into the Interactive Music Hierarchy. After files have been added as tracks to the

segment, they can be accessed through the Music Segment Editor like any other

music track.

Adventures in MIDI

172

The Audio File Importer showing a single

MIDI file to be imported as a Music Segment

Alternately, you can drag and drop MIDI files from folders directly into the Wwise

Interactive Music Hierarchy.

Imported MIDI_Project_Adventure .mid file

After MIDI files have been added as tracks to the segment, you can access them

through the Music Segment Editor, where any combination of audio and MIDI

tracks can be arranged and edited within the Music Segment.

Editing tracks in the Music Segment Editor

MIDI Tracks within a Music Segment exhibit the same behavior and functionality as

an audio file, with one exception: audio properties are not modifiable in the Music

Segment. Since MIDI is a data representation only, the audio properties are a part of

the MIDI Target or "Instrument".

Adventures in MIDI

173

The MIDI Target and MIDI Clip Tempo can be defined for either the Music Segment

(Parent) or Music Track (Child) in the MIDI tab in the Music Segment Property

Editor or Music Track Editor.

The MIDI tab in the Music Segment Property Editor

The MIDI Target is specified as the Sound Object through which all MIDI events

are routed. This property can target a specific Sound Object or a Blend Container

including multiple Sound Objects, each with their own individual MIDI properties.

The MIDI Target can be assigned to a Music Segment or Music Track by navigating

to a Sound Object through the Project Explorer - Browser or by dragging and

dropping a Sound Object from the Actor-Mixer Hierarchy onto the MIDI Target

field.

Adventures in MIDI

174

Assigning the MIDI Target using drag and drop

(1) or using the Project Explorer - Browser (2)

A MIDI Clip can use either the Tempo specified in the MIDI file to control its tempo

or it can use the tempo set for the Music Segment.

The MIDI Clip Tempo can either use tempo information from the General Settings

tempo specifications for the Music Track hierarchy or tempo from the (MIDI) file.

Assigning the MIDI Clip Tempo Source

There are some caveats to using MIDI Clip tempo information within the Wwise

Music System:

• Transition scheduling between segments is always done using the tempo set for the

segment and is never influenced by tempo events indicated in the MIDI clips/files.

• Triggers are scheduled to play on the beat, bar, grid of the music segment and not

based on the tempo of the MIDI clips/files.

• MIDI files/clips can be exported with one or more tempo changes and, if the

option 'file' is selected, the clip will listen to these tempo changes to play back the

MIDI notes and CC on time.

Adventures in MIDI

175

• These MIDI file/clip-based tempo changes do not influence the tempo of the

Segment; thus MIDI clip and segment transitions can easily become out of sync.

Section Summary

In this section we have imported a MIDI file and described the track-specific

MIDI functionality. The MIDI file is the currency of communication between a

composition created within a DAW and its eventual presentation in the game.

Adventures in MIDI

176

Setting up Wwise Synth One

Before we begin working with MIDI in the Interactive Music Hierarchy, let’s take a

look at the synthesizer functionality of the Wwise Synth One source plug-in.

Source Editor - Wwise Synth One

• Input

• Frequency Mode - The source of the input frequency used by the oscillators.

• Base Frequency - Frequency is obtained from the Base Frequency property.

• Midi Note - Frequency is obtained from received MIDI note events.

• Base Frequency

• 20-20000 Hz - Input frequency for oscillators in Hz.

• 2 Oscillators

• 4 Waveform Types - Available for each Oscillator.

• Sine

• Triangle

• Square

• Sawtooth

• Transpose: The Pitch of the Oscillator

• -3600 to +3600 cents - Transposition of input frequency, in cents.

• Level - Output level of Oscillator, in dB, applied before the Oscillators are

combined.

• PWM (Pulse Width Modulation) - A technique that conforms the width of the

pulse based on the modulator signal.

Adventures in MIDI

177

• Invert - Inverts the Output of the Oscillator.

• Output - How the Oscillator outputs are combined

• Mode

• Mix: the samples are added

• Ring: the samples are multiplied

• FM (Frequency Modulation) - This value determines how much of Oscillator

2's output is used to generate oscillator 1's output.

• 20-20000 Hz

• Level (Volume) - Level applied to the final signal (combined Oscillator outputs

mixed with noise generator output).

• Noise

• Noise Shape - The type of noise generated.

• White Noise

• Pink Noise

• Noise Level (Volume): Level applied to the output of the noise module, in dB.

The level is applied before the output of the noise module is mixed with the

combined Oscillator outputs.

Adventures in Synthesis

The MIDI Project Adventure uses four instruments that were recreated using the

functionality of the Wwise Synth One plug-in. These instruments include: two lead

square wave synths, a bass synth comprised of a combination of sine and sawtooth

waveforms, and a percussion synth utilizing white noise. Experimentation is the key

when working with synthesis, and often the best sounding synths are the result of the

creative exploration within the limitations of a feature set.

Here are some things to keep in mind when designing your synths:

• RTPC: Real Time Parameter Control can be used in conjunction with a Game

Parameter set by the game or internally from Wwise as part of a Wwise Meter

effect plug-in to output a game parameter to modify properties of the synth.

• Modulator Envelope: Modulator Envelopes can be used to control the Attack,

Decay, Sustain, Release and other Envelope behaviors of any property that can be

modified using RTPC.

• Modulator LFO: Modulator LFOs can be used to modify the properties of Wwise

Synth One as a RTPC which can produce wildly varied dynamics.

Designer Note

For more information on Modulator LFOs and Modulator Envelopes, see

the 'Modulators' section in the Making Magic chapter.

Adventures in MIDI

178

The Wwise Synth One plug-in can be added as an input source to a Sound SFX in

the same way that the Silence plug-in was added in Chapter 1. To being add Sound

SFX object to the default work unit by clicking the Sound SFX icon in the Project

Explorer toolbar, a new Sound SFX is created. Alternately, Sound SFX can be created

from the contextual menu or by using shortcut keys.

Creating a Sound SFX from the Project Explorer toolbar

After double-clicking to select the new Sound SFX, you can add the Wwise Synth

One plug-in from the Add Source menu in the Contents Editor.

Creating a Wwise Synth One source plug-in for a sound object

The Source Editor can be accessed in the Contents Editor by double-clicking the

plug-in icon.

Adventures in MIDI

179

Source plug-in icon for Wwise Synth One

Wwise Synth One - Source Editor

The name of the Wwise Synth One source plug-in can now be renamed in the Source

Editor to reflect its intended use.

Renaming the Wwise Synth One plug-in in the Source Editor

The synth can be auditioned by selecting the Sound Object in the Actor-Mixer

hierarchy and pressing 'Play' (or Spacebar).

Adventures in MIDI

180

By default, the Input Frequency Mode is set to Base Frequency and uses the Base

Frequency property value in Hz as an input for the Oscillators. To use the Wwise

Synth One plug-in in conjunction with a MIDI file, the Input must be set to MIDI

Note.

Setting the Input Frequency Mode to MIDI Note in the Source Editor

Without much effort, a basic instance of the Wwise Synth One plug-in can be ready

for use in conjunction with a MIDI file (or files).

Section Summary

The process and methodology of synthesis is a well-established part of creative music

making. The inclusion of Wwise Synth One as part of the runtime functionality of

the Wwise audio engine opens up a wide-range of capabilities to harness the power

of realtime sound synthesis. The ability to modify properties dynamically unlocks a

veritable treasure-trove of interactive possibilities.

Adventures in MIDI

181

Connecting MIDI & Sound

The compositional task has its underpinnings in the graphical representation

of notes and behaviors. Whether on manuscript (staff) paper, a "piano roll", or

beneath the surface of a DAW as MIDI notes, the notation serves as a mechanism to

communicate the intended performance to be played back by performers or their

mechanical/ digital equivalent. Operating below the surface of most computer-

based composition tools, MIDI has provided a consistent and standardized way

to represent a composer's musical intention. Wwise acts as an interpretor for this

intention and can be used to play back and participate in the interaction between the

composition and the "game as performer" modifying properties of the composition

in realtime.

A MIDI file from a DAW must be exported with special considerations for use

in the Wwise Authoring Application. Specifically, any tempo and MIDI channel

configurations should be assigned in correlation to their expected use. Wwise will, by

default, use the tempo and MIDI channel assignments exported in the MIDI file to

control these aspects.

Importing the Individual MIDI Tracks

The instrument tracks have been exported from a DAW as four individual files which

represent the different instruments:

• MIDI_Project_Adventure_Square_01.mid

• MIDI_Project_Adventure_Square_02.mid

• MIDI_Project_Adventure_Bass.mid

• MIDI_Project_Adventure_Drums.mid

Each file has been output at a tempo of 140BPM, all channels (Omni), and full

Velocity.

MIDI files can be imported as Music Segments or as tracks within an existing Music

Segment by either using the Audio File Importer or by dragging and dropping them

into the Interactive Music Hierarchy. After files have been added as tracks to the

segment, they can be accessed through the Music Segment Editor like any other

music track.

Adventures in MIDI

182

The Audio File Importer showing multiple

MIDI files to be imported as Music Tracks

After MIDI files have been added as tracks to the segment, you can access them

through the Music Segment Editor, where any combination of audio and MIDI

tracks can be arranged and edited within the Music Segment.

Editing tracks in the Music Segment Editor

MIDI Tracks within a Music Segment exhibit the same behavior and functionality

as an audio file. (as explained in Chapter 7. Adventures in Music - The Layered

Approach - Creating the Ambient Music Segment)

Each track needs to be associated with a Sound Object that is used to play back

information communicated from the MIDI file.

Adventures in MIDI

183

Music Segment MIDI Properties

The MIDI Target and MIDI Clip Tempo can be defined for either the Music Segment

(Parent) or Music Track (Child) in the MIDI tab in Music Segment Property Editor

or Music Track Editor.

The MIDI Target is specified as the Sound Object through which all MIDI Events

are routed. This property can target a specific Sound Object or a Blend Container

including multiple Sound Objects, each with their own individual MIDI properties.

The MIDI tab in the Music Segment Property Editor

The MIDI Target can be assigned to a Music Segment or Music Track by navigating

to a Sound Object through the Project Explorer - Browser or by dragging and

dropping a Sound Object from the Actor-Mixer Hierarchy onto the MIDI Target

field.

Adventures in MIDI

184

Assigning the MIDI Target using drag and drop

(1) or using the Project Explorer - Browser (2)

Wwise can use the Tempo map to control the tempo (exported as part of the MIDI

file) or use the tempo specification set for the sound object in the Interactive Music

Hierarchy.

The imported MIDI tracks use the MIDI Clip Tempo information from the (MIDI)

file to control their tempo.

The composition can now be auditioned by selecting the Music Segment in the

Interactive Music hierarchy and pressing 'Play' (or Spacebar).

Sound Object MIDI Properties

Additional MIDI properties are located in the MIDI Tab for the parent Sound

Object. These properties can be used to: control the behavior of incoming MIDI

Events, transform the transposition or velocity offset of MIDI data before it is

executed, or filter incoming MIDI data. These techniques can be particularly useful

when building instruments comprised of multiple samples, synthesizers, or any

combination to be targeted by a MIDI file.

Adventures in MIDI

185

Sound Object properties in the MIDI Tab of the Sound Property Editor

Sound Object MIDI Properties include:

• Keymap Editor - Inspects the object in the MIDI Keymap Editor.

• MIDI Events

Adventures in MIDI

186

• Override parent - Determines whether the MIDI events controls are inherited

from the parent or defined at the current level in the hierarchy. When this

option is not selected, the MIDI Events controls are unavailable.

If the object is a top-level object, this option is unavailable.

• Play On - Determines what type of MIDI note event will cause the object to

play.

• Note-On - Plays the object on Note-On.

• Note-Off - Plays the object on Note-Off.

• Break On Note-Off - If Play On is set to Note-On, this property determines

whether the playing object stops looping upon reception of a note-off. If so, the

playback of looped sounds or continuous containers is stopped, while allowing

the current object(s) to finish playing.

• Note Tracking:

• Override parent - Determines whether the Note Tracking controls are inherited

from the parent or defined at the current level in the hierarchy. When this

option is not selected, the Note Tracking controls are unavailable. If the object is

a top-level object, this option is unavailable.

• Enable - If selected, the node's playback is pitch-shifted. The amount of pitch-

shifting is determined by the note of the received MIDI event and the value of

Root Note.

• Default Value: false

• Root Note - The root note of the node's sound. This value is used in

conjunction with a received MIDI note to determine the pitch-shifting of the

node's sound.

• Default Value: C4

• Transformation:

• Transposition - The offset applied to the MIDI event's note. The transposition

is applied before the Key Range filters.

• Default Value: 0

• Velocity Offset - The offset applied to the MIDI event's note velocity. This

applies to MIDI note events only. The offset is applied before the Velocity filters.

• Default Value: 0

• Filters

• Key Range - Filter applied to received MIDI note event's note. A received MIDI

note event is ignored if its note is not within the Min-Max range.

• Default Min: C-1 Default Max: G9

Note: The mapping of numerical MIDI notes to octaves is specified via the

user preferences; refer to: Wwise Help > Wwise Reference > Projects > User

Preferences for more details.

Adventures in MIDI

187

• Velocity - Filter applied to received MIDI note event's velocity. A received MIDI

note event is ignored if its velocity is not within the Min-Max range.

• Default Min: 0 Default Max: 127

• Channel - Filter applied to received MIDI note event's channel. A received

MIDI note event is ignored if its channel is not in the filter.

• Default: 1-16

Section Summary

As another feature in the expanding Wwise Authoring Application, MIDI can be

employed as the right technique for the right situation. Leveraging small sample-

sets, synthesis, and the power and flexibility of MIDI can help balance out the use

of resources across resident memory (size on disk or RAM) and processing (CPU).

Depending on the constraints of your target platform and the desired aesthetic,

MIDI can be a powerful ally towards maximizing resources and creating a dynamic

audio experience.

Adventures in MIDI

188

MIDI Summary

Like a hero fallen from grace, the return of MIDI comes with the knowledge of past

battles and the remembrance of the way it used to be. Some of this knowledge can

be immediately put to use navigating through the dawning of a new era for MIDI;

experience with: creating sample-sets, MIDI channel assignment, velocity, and

MIDI Events. Harnessing the inherent efficiency, dynamism, and flexibility of MIDI

heralds the return of a well tested methodology. However, some parts of MIDI still

hold negative connotations that need to be minimized; "bad" sounding, difficult

workflow, and general prejudice work against the fundamental structure that MIDI

makes available.

Throughout this chapter we have:

• Imported MIDI Files

• Added MIDI Files to a Music Track

• Made Modifications to the MIDI Target

• Adjusted the MIDI Clip Tempo

• Looked at the synthesizer functionality of the Wwise Synth One

• Talked about preparing music content for integration.

Stepped through the process of:

• Importing MIDI files.

• Setting up the Wwise Synth One plug-in.

• Creating a multitrack composition comprised of:

• Four MIDI tracks representing different instruments.

• Four Wwise Synth One synths representing different instruments.

We've also touched on:

• Advanced functionality of the MIDI format.

Throughout this section we have created the following objects:

• A Music Segment containing a MIDI file with individual channels, each targeting

instances of Wwise Synth One which represent the different instruments.

• A Music Segment containing four individual MIDI files, each targeting instances

of Wwise Synth One which represent the different instruments.

Adventures in MIDI

189

Music Additional Resources

Wwise Knowledge Base - Advanced settings playback limits and interactive music

Wwise Knowledge Base - Looping and streaming of audio clips and interactive music

Wwise Knowledge Base - Understanding the Interactive Music Engine

Wwise Knowledge Base - Interleaved Streaming in Interactive Music

Wwise Knowledge Base - Using States with the Interactive Music Hierarchy

Video Tutorial - Creating Interactive Music Structures

Video Tutorial - Defining Interactive Music Transitions

Video Tutorial - Creating Stingers

Game Sound Design - Making Music Interactive: Elaboration of the Feature Set in

Wwise

Game Sound Design - Dynamic Music Creation Using Wwise

http://kb.gowwise.com/questions/204/Advanced+settings+playback+limits+and+interactive+music
http://kb.gowwise.com/questions/92/Looping+and+streaming+of+audio+clips+and+interactive+music
http://kb.gowwise.com/questions/176/Understanding+the+Interactive+Music+Engine
http://kb.gowwise.com/questions/179/Interleaved+Streaming+in+Interactive+Music
http://kb.gowwise.com/questions/177/Using+States+with+the+Interactive+Music+Hierarchy
http://www.youtube.com/watch?v=Zvnt3tbL3OU&hd=1
http://www.youtube.com/watch?v=STAdQwgDYHQ&hd=1
http://www.youtube.com/watch?v=fLrz463kVEI
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/making-interactive-music-for-games-part-one.html
http://www.gamesounddesign.com/in-depth-creation-of-dynamic-music-in-a-video-game.html

190

Chapter 9. Mastering the Mix

Overview .. 191

Routing with Audio Busses ... 192

Routing with Auxiliary Busses .. 194

Using Auxiliary Sends .. 196

User-Defined Auxiliary Sends ... 197

Game-Defined Auxiliary Sends ... 199

States and Mix Snapshots .. 201

Auto-Ducking vs. Side-Chaining ... 203

Auto-Ducking .. 203

Side-Chaining .. 204

Mixing with RTPC .. 204

Using Effects in the Master-Mixer ... 206

Visualizing the Mixing Desk ... 207

Mixing Techniques for Attenuations ... 209

Mix Summary .. 210

Mixing Additional Resources: ... 211

Mastering the Mix

191

Overview

Heading into the final mix is not unlike entering into battle with a fire breathing

dragon. By the time you arrive at the scene of the last stand against the bloodthirsty

creature, you’ve hopefully equipped yourself with the every skill and weapon in your

arsenal in order to belay the beast into submission. As the signal flow winds its way

through the labyrinth of routing possibilities, you know you have the flexibility to

reshape the audio path and the power to commandeer the ultimate mix.

From a single instance of a sound played back by an audio engine, to the potentially

massive pile-up of sounds happening in a single frame, the race is on to make sure

that the right sounds are heard throughout the game. Whereas the Mix title has been

appropriated from the music and film world where it represents a time locked and

non-interactive representation of sound, its use in game audio tends to be a bit more

nebulous. Using a combination of dynamic mix-related methodologies and available

techniques to balance the final sound output has become one of this generation's

greatest challenges.

This chapter takes you through the process of:

• Routing with Audio Busses.

• Routing with Auxiliary Busses

• Using Auxiliary Sends.

• States and Mix Snapshots.

• Auto-ducking vs. Side-chaining.

• Mixing with RTPC.

• Using effects in the Master-Mixer.

• Environmental reverb.

• Reorganizing the Master-Mixer.

• Visualizing the mixing desk.

• Mixing techniques for attenuations.

Mastering the Mix

192

Routing with Audio Busses

Anyone who has worked with hardware or software mixers in the past can appreciate

the Master-Mixer hierarchy in Wwise with its customizable interface for routing

audio signals from sound objects throughout the project. You can establish

a comprehensive and flexible representation of the signal flow by adding and

organizing audio and auxiliary busses.

Fundamentally, audio busses are a way to balance volumes, add effects, apply RTPC,

and state-based changes. Audio busses can be added to the Master-Mixer hierarchy

by selecting an existing audio bus and then clicking the audio bus icon in the Project

Explorer toolbar. A new audio bus is created as a child of the selected audio bus.

Creating an audio bus from the Project Explorer toolbar

After an audio bus has been created, it can be assigned to any sound object via the

General Settings tab in the Property Editor. Audio busses can be assigned to a sound

object by either navigating to the Bus through the Project Explorer - Browser, or by

simply dragging and dropping an audio bus from the Master-Mixer onto the Audio

Output Bus field.

Audio output bus and settings in the Property Editor

Mastering the Mix

193

Audio busses can be configured and reconfigured to suit the developing needs of any

project. Dragging and dropping audio busses within the Master-Mixer hierarchy also

maintains any assignments for routing that have been established for a sound object.

Assigning the audio output bus of a sound object using drag

and drop (1) or using the Project Explorer - Browser (2)

In the previous image, once the “Ambient” audio output bus has been assigned, any

sound output from the “Ambient_Background” Actor-Mixer is routed through the

“Ambient” audio bus. The output bus volume and audio output bus low pass filter

settings control the amount of volume or low pass filter from the sound object that is

passed to the audio output bus. Furthermore, the properties set for the audio bus in

the Master-Mixer hierarchy govern the final output.

Mastering the Mix

194

Routing with Auxiliary Busses

An auxiliary bus is organized within the Master-Mixer hierarchy in the same way as

a standard audio bus. Each auxiliary bus can manage up to four effects which can be

enabled or disabled programmatically or with game parameters. Auxiliary busses can

also be positioned within the Master-Mixer hierarchy as children of other audio or

auxiliary busses, allowing for more than four effects in a series.

The process begins by adding an auxiliary bus to the Master-Mixer hierarchy by

selecting an existing audio or auxiliary bus and then clicking the auxiliary bus icon in

the Project Explorer toolbar. A new auxiliary bus is created as a child of the selected

audio or auxiliary bus.

Creating an auxiliary bus from the Project Explorer toolbar

Each auxiliary bus includes metering and allows you to set volume, add effects,

RTPC, as well as apply changes based on state.

Mastering the Mix

195

General Settings tab of the auxiliary bus in the Property Editor

Mastering the Mix

196

Using Auxiliary Sends

Traditionally, auxiliary sends are used to route an audio signal to a set of effects that

are then applied to any audio signal as a whole. In other words, an auxiliary send is a

convenient way to route the output of a sound object in the Actor-Mixer hierarchy to

an auxiliary bus within the Master-Mixer Hierarchy.

There are two types of auxiliary sends in Wwise:

• User-defined auxiliary sends

• Game-defined auxiliary sends

A sound object can use one or both types of auxiliary send from the General Settings

tab in the Property Editor. The different types of auxiliary send behave in exactly the

same way. Sends from a sound object can be mixed and matched between the two

types within the authoring application.

Defining auxiliary sends in the General Settings tab of the Property Editor

Mastering the Mix

197

The auxiliary send is controlled in two different ways:

• User-defined: Per sound object in Wwise.

• Game-defined: Per game object using the SDK API.

The send volume related to an auxiliary bus within the Master-Mixer hierarchy

is independent of the audio output bus volume and routing. This allows for the

creative application of effects and other interactive mixing techniques.

User-Defined Auxiliary Sends

Up to four user-defined auxiliary busses can be assigned to any sound object in the

Actor-Mixer hierarchy. The send volume is the level or amplitude of the audio signal

that is sent to an auxiliary bus that can also be parameterized using RTPC. User-

defined auxiliary busses are assigned in the General Settings tab of the Property

Editor.

User-defined auxiliary sends in the Property Editor

Mastering the Mix

198

In this example we will create a user-defined auxiliary send that is used to apply a

magical effect to certain sound types in the project when our hero is in danger. The

auxiliary bus will contain a chain of effects that utilize the "Danger" game parameter

to adjust various properties. Modifying the sound of weapon swings and magic will

be used as an indicator of danger and will enhance the dynamic aspects of battle.

The source of our hero’s power stems from an ancient amulet, and so we

will name the newly created auxiliary bus “Amulet”. In this example we’ll be

routing the output of the “Swing_Weapon_Type” switch container and of the

“magic_blast_fire_distance_blend” blend container to the Amulet auxiliary bus.

Any existing auxiliary bus can be assigned to sound objects by either navigating to

the bus through the Project Explorer - Browser, or by simply dragging and dropping

the auxiliary bus from the Master-Mixer hierarchy onto the “Auxiliary Bus” field in

the User-Defined Auxiliary Sends section of the Property Editor.

Assigning the auxiliary bus of a sound object using drag

and drop (1) or using the Project Explorer - Browser (2)

Once a sound object routes a signal to an auxiliary bus, the send volume can be

adjusted. Adding and adjusting effects can now be applied to the “Amulet” auxiliary

bus to communicate a sense of magical change when our hero is in danger. In this

example, a custom “Wwise Guitar Distortion” has been added as the first effect and

has been set to increase the wet/dry mix based on the "Danger" game parameter.

Additionally a “Wwise Tremolo” has been added as the second effect, with the LFO

depth controlled by the "Danger" game parameter.

Mastering the Mix

199

A chain of effects on the “Amulet” auxiliary bus

Designer Note

The user-defined auxiliary bus routing cannot be changed at runtime, but

the game can use the SetBusEffect() and SetActorMixerEffect() functions

to set different effects ShareSets to the auxiliary bus. This method allows

for the application of environment acoustics in your game, but with a

finer granularity (per audio object and additionally per game object).

By controlling auxiliary sends you can apply creative and runtime-conscious special

effects throughout the project.

Game-Defined Auxiliary Sends

In addition to setting user-defined auxiliary busses, up to four game-defined

auxiliary busses can be set by the game engine or managed programmatically outside

of the authoring application for each game object. Auxiliary busses defined by the

game can be used for reverbs, game-state dependant effects, interactive mixing, or

any other game-defined usage. Additionally, the sound designer has control from the

user interface to enable and offset the game-defined auxiliary send volumes on a per

sound basis from the General Settings tab in the Property Editor.

Mastering the Mix

200

Enabling game-defined auxiliary sends in the Property Editor

Game objects can be routed to a combination of game-defined and user-defined

auxiliary busses for a total of eight independent auxiliary targets (four game-defined

and four user-defined).

Designer Note

The final send volume is the combination of the game-defined auxiliary

send volume from the UI and the SetGameObjectAuxSendValues() SDK

function set by a programmer.

Mastering the Mix

201

States and Mix Snapshots

Another powerful practice for manipulating an interactive mix is by using states,

or in this context, mix snapshots. States can be directly related to, and commonly

referred as, game states such as: combat, stealth, idle. They can also be used to define

spaces such as a forest, hallway, or dungeon and, furthermore, can be abstracted

to define any circumstance under which you may want to change the sound of the

game. States are usually defined in the game engine and triggered within Wwise,

where you can combine multiple states simultaneously.

Designer Note

When an object is registered to multiple states, a single property can

be affected by multiple value changes. In this scenario, each change of

value is added up together. For example, when two states in two different

state groups have a volume change of -6 dB, and both become active

simultaneously, the resulting volume will be -12 dB.

Due to the non-linear progression and randomness inherent in most games, it is

often desirable to plan for a mix that can respond to events in the game dynamically

as opposed to a static mix that does not change based on circumstances within

the game. By using state changes to modify the properties of different mix busses,

you can create a system for dynamically mixing the game. In a sense, it is like

programming an artificial intelligence that is able to make changes to the mix in

accordance with the rules specified by the sound designer.

States are defined in the game syncs tab of the Project Explorer and include settings

for defining a default transition time or custom transitions based on changes

between specific states.

Defining states and setting default and custom transition times

Mastering the Mix

202

Once states have been established, properties that can be affected by state changes are

available for any audio object or audio bus by adding a state in the States tab.

State based volume reduction of the ambient bus when in the action state

For more information on states:

Wwise Help > Interacting with the Game > Working with States

Wwise Knowledge Base - Using Multiple States to Affect Sounds

Wwise Knowledge base - Creating a Temporary Loss of Hearing Effect

http://kb.gowwise.com/questions/22/Using+Multiple+States+to+Affect+Sounds
http://kb.gowwise.com/questions/18/Creating+a+Temporary+Loss+of+Hearing+Effect

Mastering the Mix

203

Auto-Ducking vs. Side-Chaining

While mix states give explicitly defined control over properties, you can also

automate volume reduction based on an incoming signal from another audio bus.

This process is often referred to as ducking.

Designer Note

Ducking allows you to automatically lower the volume level of all objects

passing through one bus in order for another simultaneous bus to have

more prominence.

Auto-Ducking

Wwise allows for Auto-ducking through the General Setting tab on any audio bus.

Simply insert any other bus into the Auto-ducking window and define the volume

attenuation and fade in/out properties.

Character audio bus automatically ducking Ambient audio

bus by -6 dB over a period of one second using a linear curve

Auto-ducking begins when the selected bus receives any signal and applies the set

attenuation to any inserted busses for the duration of a signal, including silence.

Mastering the Mix

204

Side-Chaining

Another approach to ducking is through the use of Side-Chaining. Side-chaining

consists of monitoring the level of an audio signal and using it to manipulate another

audio signal. A concrete example of side-chaining occurs in radio broadcasting

where a DJ's voice automatically ducks the music volume.

When using Side-Chaining as part of mixing, you are essentially taking volume

information from input signal with the Wwise Meter effect and using it to affect

other parts of the mix.

Designer Note

More information about side-chaining:

http://www.audiokinetic.com/download/documents/

Wwise_SideChaining_Tutorial.pdf

Mixing with RTPC

Real Time Parameter Control (RTPC) can also be leveraged to provide dynamic

mixing opportunities using parameters from the game to drive volume changes

throughout the project. A common parameter driven mix technique is to apply a low

pass filter to the in-game environmental mix as the player’s health decreases. This

can easily be accomplished with a health game parameter used as an RTPC on one or

many audio busses.

http://www.audiokinetic.com/download/documents/Wwise_SideChaining_Tutorial.pdf
http://www.audiokinetic.com/download/documents/Wwise_SideChaining_Tutorial.pdf

Mastering the Mix

205

Remember that Danger game parameter we created in order to increase the intensity

for the horizontal music system? The same game parameter could be used to reduce

the volume of sounds or audio busses that demand less attention during combat.

Things like ambience or character movement sounds could have an RTPC curve

applied to reduce their volume in the mix and make way for the sounds of combat.

Having multiple ways to interact with the different aspects of the mix means that

when difficulties arise there will be several ways to approach a solution. Mixing with

RTPC is another effective tool in the toolbox of interactive and dynamic mixing.

Mastering the Mix

206

Using Effects in the Master-Mixer

The use of common DSP is well defined by decades of linear music and sound

production. EQ, Delay, Distortion, Compression, among others have found common

use in most Digital Audio Workstations for decades, but have only recently (within

the last 10 years) become efficient enough to use at runtime in order to affect the

mix. It’s not just the use of fixed settings that makes this area of growth so exciting,

but the dynamic and interactive nature of manipulating DSP using parameters from

the game to produce special effects that would be impossible to achieve using other

techniques.

Applying a limiter to the Master Audio Bus

Effects used at runtime will always use up CPU power, but being aware of the

different costs can help you use them more efficiently. If an effect (or effects) are

applied to only a few mono instances of a sound object, it is more efficient to apply

these at the Actor-Mixer level. If many simultaneous sounds need to be processed by

a given effect, it would be more efficient to apply the effect(s) on an audio bus that

will be mixed before applying the effect (in stereo or 5.1 depending on the speaker

configuration).

Mastering the Mix

207

Visualizing the Mixing Desk

The Mixing Desk is a flexible and powerful interface that groups a variety of

properties into one view, allowing you to fine-tune the audio mix in real time. You

can add any sound object, audio or auxiliary bus to the Mixing Desk, and then define

routing, apply effect and attenuation ShareSets, edit state properties, and modify the

properties of individual objects and busses.

After your audio and motion are integrated into the game, you can connect Wwise

to the game and profile information in real time as the game is being played.

Adjustments and mixing decisions can be made in real time in game directly from

the authoring application. Activity of each object within the Mixing Desk can also

be viewed, including when a voice is playing, if a bus is being ducked, and whether

effects are being bypassed either manually or programmatically. Each audio object

can also be muted or soloed, allowing you to adjust the individual objects within the

audio mix.

Mastering the Mix

208

Visualizing the mix using the Mixing Desk view

A context menu is also available for each property setting in the mixer strip. These

menus contain a set of commands specifically related to the selected property.

For example, when you right-click one of the Effect slots (0-3), you can edit the

properties of the inserted effect, set a new effect, bypass the effect, and so on. To

access the contextual menus, simply right-click the individual property settings in

the mixer strip.

The Mixing Desk setup is saved within a Mixing Session ShareSet. This allows you to

create different mixing sessions for different components of the game. It also means

that you can set up a mixing session and then continue to fine-tune the audio mix at

a later time.

Mastering the Mix

209

Mixing Techniques for Attenuations

The use of attenuations to balance the resulting mix is one of the best contributors

to a natural sounding game. Simple things like extending the maximum distance

while changing the curve depth or shape can have a tremendous effect, allowing the

sounds to be heard from greater distance at a lesser volume. Alternately, reducing

the maximum distance can help to clean up an overactive mix and gain some clarity

between elements.

Additionally, the auxiliary send volumes of an attenuation are directly related to the

amount of signal sent to both game and user-defined busses. Ensuring the correct

balance between the output bus volume and the game/user-defined send volumes for

a sound or group of sounds can help reveal detail and definition in the mix.

Adding a custom auxiliary send volumes curve to an attenuation

Mastering the Mix

210

Mix Summary

A sound designer equipped with the tools to enable a comprehensive dynamic mix

can rest easier when the time comes to complete the game’s final mix. With tools

modeled after those commonly used in the linear world, and further imbued with

the ability to react interactively, a doorway to the next level in dynamic mixing is

opened.

Throughout this chapter we have:

• Discussed signal-flow and routing using audio busses.

• Established the use of user-defined auxiliary sends.

• Established the use of game-defined auxiliary sends.

• Discussed the use of states as mix snapshots.

• Compared auto-ducking with side-chaining.

• Mixed with RTPC.

• Discussed the benefits of using effects in the Master-Mixer.

• Shown ways to visualize the mix using the Mixing Desk.

• Illustrated techniques for mixing with attenuations.

Stepped through the process of:

• Creating audio busses.

• Creating auxiliary busses.

• Setting up states.

• Applying auto-ducking to audio busses in the Master-Mixer.

Also touched on:

• The relationship between wet and dry reverb volumes in the attenuation editor.

Throughout this section we have created the following objects:

• An “Amulet” auxiliary bus used to affect magic and weapon swing sounds based

on the “Danger” game parameter.

Mastering the Mix

211

Mixing Additional Resources:

Video Tutorial - Mixing Desk

Video Tutorial - Dynamic mixing using States

Video Tutorial - Wwise Side-Chaining

Wwise Knowledge Base - Advanced settings: usage and dynamic mixing techniques

Wwise Knowledge Base - Wwise Side-Chaining Tutorial

Wwise Knowledge Base - Playback Limit and Priority: Use Case Scenarios

Wwise Knowledge Base - Using Multiple States to Affect Sounds

Wwise Knowledge base - Creating a Temporary Loss of Hearing Effect

Wwise Help > Interacting with the Game > Working with States

http://www.youtube.com/watch?v=tSchbUJjaHg&hd=1
http://www.youtube.com/watch?v=a77W-THkPMY&hd=1
http://www.youtube.com/watch?v=TSA-q4dzvd8&hd=1
http://kb.gowwise.com/questions/201/Advanced+settings%3A+usage+and+dynamic+mixing+techniques
http://www.audiokinetic.com/download/documents/Wwise_SideChaining_Tutorial.pdf
http://kb.gowwise.com/questions/29/Playback+Limit+and+Priority%3A+Use+Case+Scenarios
http://kb.gowwise.com/questions/22/Using+Multiple+States+to+Affect+Sounds
http://kb.gowwise.com/questions/18/Creating+a+Temporary+Loss+of+Hearing+Effect

212

Chapter 10. HDR Audio Wwizardry

Overview .. 213

Implementing HDR Audio in Wwise .. 215

Setting up a HDR Audio Mix ... 216

Setting up the HDR Audio Dynamic Range Window 216

Enabling HDR Audio in the Master-Mixer Hierarchy ... 218

Setting up HDR Audio Dynamics Properties .. 218

The Use of HDR Audio in the Actor-Mixer Hierarchy .. 221

Enabling Envelope Tracking .. 222

Editing a Waveform Envelope ... 224

Enabling Source Normalization .. 225

Using Make-up Gain ... 226

Using the Voice Monitor to Understand HDR Audio ... 227

Opening the Voice Monitor View ... 227

Auditioning Sounds in the Soundcaster .. 228

Capturing Data from Wwise ... 229

HDR Audio Summary ... 231

HDR Audio Wwizardry

213

Overview

High atop the misty mountain peak, the wizened Wwizard stares out across the

battle raging across the valley. The maelstrom churns below as the loudest sounds of

cold steel-on-steel impact, blasts of magical power, and the release of catapults drift

up from the ensuing assault. As each one of these moments takes precedence, the

soundscape clears to reveal and accentuate the madness unfolding. Whether we are

conscious of it or not, a finely tuned mechanism is at work assigning relevance to the

loudness of what we hear and shaping the way we inherently experience the world

through sound. So how can the idea of prioritizing loud sounds fit with today’s

gaming?

High Dynamic Range (HDR) is a new mixing paradigm available within Wwise

to augment the already existing suite of dynamic mixing tools. HDR allows for

authoring a system that responds to the dynamic loudness of sounds by giving

priority to sounds that are authored the loudest. With this relativistic mixing

system, the clarity of intention from the authoring perspective is ensured to make

appropriate space in the mix for “important” sounds to be heard.

Think back to the scene that we just described. As the sounds of battle ensue, you

instinctively focus on the loudest sounds (combat) and quieter sounds (footsteps)

are ignored. In an HDR system, these loud sounds represent the top of a user-defined

“window” that moves dynamically to ensure that the loudest sounds are in focus. As

this window moves upward, sounds below the window bottom are removed from the

mix. When one side emerges triumphant in the battle below and eyes turn toward

the misty mountain top, the sound of horse hooves pounding the earth swell with

renewed amplitude, becoming the loudest, and most threatening focus. As the HDR

window threshold returns to its rest position, the original amplitude of the horses is

represented.

HDR Audio Wwizardry

214

An illustration of the HDR window shifting in

response to increasing loudness of sounds over time.

This chapter takes you through the process of:

• Implementing HDR Audio in Wwise.

• Setting up an HDR Audio Mix.

• Setting up the HDR Audio Dynamic Range Window.

• Enabling HDR Audio in the Master-Mixer Hierarchy.

• Setting up HDR Audio Dynamics Properties.

• Using HDR Audio in the Actor-Mixer Hierarchy.

• Enabling Envelope Tracking.

• Editing a Waveform Envelope.

• Enabling Source Normalization.

• Using Make-up Gain.

• Using the Voice Monitor to Understand HDR Audio.

• Opening the Voice Monitor View.

• Auditioning Sounds in the Soundcaster.

• Capturing Data from Wwise.

HDR Audio Wwizardry

215

Implementing HDR Audio in Wwise

HDR in Wwise can be enabled for any parent Audio Bus in the in the Master-Mixer

Hierarchy. Once enabled, the Audio Bus acts as a converter between Sound Object

volumes at the input of the HDR bus and full (device) scale at the output of the same

bus. All sounds that are routed to it are handled relative to each other within the

HDR bus, with the output of quieter sounds constantly modified according to the

properties of the system.

The controls of an HDR bus are similar to that of an audio compressor. The

properties of Threshold, Ratio, and Release Time are used to modify the behavior

of the project-specified dynamic range window. At run-time, the authored system

dynamically maps this wide range of levels to a volume range that is more suited to

your sound system's output.

In real life, the audible dynamic range, defined by the loudest possible sound and the

threshold of human hearing, is several times wider than the dynamic range offered

by speakers at game play levels. The role of the Wwise HDR system is to collapse or

"compress" this real life dynamic range into roughly 40 dB (70 dB SPL for TV/Music

listening minus 30 dB SPL for the room noise level).

The process is a sort of behavioral compression. It affects your mix by making soft

sounds inaudible as soon as loud sounds play, and then making them audible again

when the soft sounds play alone. The relative levels of sounds between one another

remain intact and add clarity to the mix by playing fewer sounds.

Designer Note

In prior literature, HDR audio systems are presented as having SPL values

directly assigned to each individual sound. Wwise removes the notion

of SPL, and instead focuses on relative mixing. Hence you will not find

a SPL slider anywhere in Wwise; only relative decibel values are used. If

you wish to use real-life SPL values into the system, then chose a value

that will act as a reference, and perform the necessary subtraction to find

the corresponding relative dB level. For example, you may decide that 100

dB SPL is your reference at 0 dB. Then a sound at 80 SPL should have its

volume slider set to -20 dB, and a sound at 130 dB SPL should have its

volume slider set to +30 dB.

HDR Audio Wwizardry

216

Setting up a HDR Audio Mix

In addition to working with the features available within the authoring application,

using the HDR feature allows you to place the loudest sounds front-and-center in

the mix. After you have determined the importance of various sound types you can

situate them within an evolving mix during production that places them in relative

importance to other sounds or sound types throughout the HDR system. The

resulting mix adheres to the volumes set for each sound and is constantly balanced

by the shifting dynamic range window.

The first step is defining the dynamic range (Volume Threshold) for the project.

Then, an Audio Bus is enabled for HDR processing and dynamics properties are

adjusted to fine-tune the way the window responds to signals within the system.

Each auxiliary bus includes metering and the ability to set the volume, add effects,

RTPC, and apply changes based on state.

Setting up the HDR Audio Dynamic Range Window

Getting set up for HDR in Wwise begins with setting the Volume Threshold

(window width) that encapsulates the expected dynamic range for a specific target

platform. This Volume Threshold applies to the dynamic range on the output of the

HDR system.

To begin setting up an HDR system using the provided Wwise Project Adventure, set

the Volume Threshold in the Project Settings to -50 dB:

Setting the Volume Threshold in the Project Settings

HDR Audio Wwizardry

217

The Volume Threshold value from the Project Settings defines the difference between

the window top and window bottom. This means that when the amplitude of the

loudest sound is played back at HDR bus volume, any sounds below the Volume

Threshold (window bottom) set for the platform will either be killed or use their

virtual voice settings according to the advanced settings defined in the object

properties of each structure. When the window shifts, the dynamic range specified

for the window is maintained as it rises and falls adjusting to the loudest sound

played back at the HDR bus volume.

Visualization of a 50 dB Dynamic Range

Volume Threshold Window shifting over time.

This Volume Threshold allows sounds that are within the specified volume range to

be heard at the output. As the window moves, the volume of sounds that are playing

is modified by the value of the loudest sound. This process ensures that sounds that

are authored the loudest are heard and quieter sounds (below the window bottom)

are removed from the mix.

HDR Audio Wwizardry

218

Enabling HDR Audio in the Master-Mixer Hierarchy

HDR, which can be enabled at any parent level Audio Bus, takes into account any

sounds routed through child busses within the hierarchy. While only one bus in a

given hierarchy can be set as an HDR Audio Bus, other Audio Busses outside of an

HDR-enabled Audio Bus can be used as additional HDR busses.

Enabling HDR in the Master-Mixer Hierarchy

Setting up HDR Audio Dynamics Properties

Dynamics properties govern the way the HDR system reacts when sounds routed to

the HDR Audio Bus interact with each other. As sounds with different volumes are

passed through the HDR Audio Bus, their amplitude dynamically adjusts the global

volume based on familiar properties like Threshold, Ratio, and Release Time.

To test the HDR system using the Wwise Project Adventure, enable HDR on the

“World_Sound” Mix Bus and set the Threshold property to -15 dB, leaving the other

Dynamics settings at their default values.

HDR Audio Wwizardry

219

Dynamics controls for an HDR enabled bus.

Threshold

The Threshold defines the minimum input level (in dB) above which the

HDR window top will engage.

Ratio

This control has a similar behavior to the ratio control in an audio

compressor. The HDR window top attenuates peaks that exceed the

threshold while reducing the volume of quieter sounds in proportion to

the ratio. For example: two sounds, one peaking at 20 dB and the other

peaking at 40 dB above threshold, come out at the same level of 0 dBFS,

as long as they are not played at the same time. The difference between

the two is that the former will result in an attenuation of -20 dB to sounds

below threshold, while the latter will result in an attenuation of -40 dB.

At lower ratios, say 4, a sound peaking at +20 dB comes out at +5 dB,

while a sound peaking at +40 dB comes out at +10 dB. The attenuation

that results on sounds below threshold in these examples is -15 dB and

-30 dB respectively. Using lower ratios is therefore useful to gain back

"global" dynamic range for sounds above threshold that are otherwise

HDR Audio Wwizardry

220

taken away by the HDR system. The drawback is that sounds may peak

above threshold, so you need to keep sufficient headroom after the HDR

bus to avoid clipping. This can be done by setting the HDR bus volume to

a value lower than 0 dB (for example, -10 dB).

Release Time

The Release time defines the rate at which the HDR window falls

back to rest when the target is below the current value. In Linear

Mode, it is the time in seconds it takes to fall by approximately 10

decibels. In Exponential Mode, it is the time in seconds it takes to reach

approximately 0.37 (1/e) of the difference between the target and the

current value. To know which mode to choose, you need to decide which

sounds best based on your source material and game type.

HDR Audio Wwizardry

221

The Use of HDR Audio in the Actor-Mixer Hierarchy

Each Sound Object has additional HDR functionality within the Actor-Mixer

Hierarchy. From the HDR Tab in the Property Editor, special considerations can be

addressed that affect the way sounds behave when processed within the HDR system.

In the Wwise Project Adventure Actor-Mixer Hierarchy, begin by setting volume

values for groups of sounds based on the provided Work Units:

• Ambient: -20 dB

• Character: - 10 dB

• Combat: -5 dB

• Magic: 15 dB

Setting the Volume for the “magic_blast_fire_distance_blend” Blend Container

These values represent a relativistic mix that represents magic sounds as the loudest,

followed by: combat, character, and ambient sounds in decreasing amplitude. This

simple group-based mix allows you to audition different sound types within the

HDR system to see how playback affects each of them.

HDR Audio Wwizardry

222

Enabling Envelope Tracking

From high atop the mountain, the threshold engages the HDR system as the first

magic blast resonates across the battlefield. The volume of the magic blast has been

authored as the loudest sound in the project, which swiftly engages the window

top and removes footstep sounds from the mix. Regardless of your position during

battle, the jolt of the blast signifies danger and all the sounds - nature, footsteps, and

fallen soldiers - are removed from your purview while you focus on the magnitude of

sound.

As the window top follows the magic blasts envelope, the cold sound of steel-on-steel

begins to cascade across the ravaged field of warriors. Authored below the relative

volume of a magic blast, each impact rings out with a sharp attack that continues

peaking the window top. The ratio property directly relates to the attenuation of

sounds below threshold. This leaves ambiance out of the mix as the battle cries rise

up towards another assault.

Untracked waveform envelope shifting the HDR window top

When Envelope tracking is enabled, an offline analysis of the waveform automatically

calculated by Wwise is used to adjust the window top in relation to the waveform's

envelope. This can be very useful for loud sounds that drive the window top over

the Volume Threshold. Because the process of tracking the waveform envelope has

a small memory cost compared to the default envelope behavior, it is recommended

for use with loud sounds or sounds with a long envelope that changes in volume.

HDR Audio Wwizardry

223

Envelope Tracking properties for Sensitivity and Active Range.

Tracked waveform envelope shifting the HDR window top.

The active range defines the area of a voice from its peak (in decibels) in which the

HDR dynamics are active. This region of interest is based on its analyzed envelope:

it is "active" as long as the current envelope level is above "peak level" minus "active

level". When it is not active, the HDR dynamics ignore the content of the sound and

the release time set in the HDR bus is applied.

HDR Audio Wwizardry

224

A chart describing the relationship between the Active Range

and HDR Release Time in relation to the envelope of a sound.

Editing a Waveform Envelope

You can further adjust individual waveform envelopes from the Source Editor for

specific sound files.

Editing the audio source envelope to isolate the interesting audio signal that

should be part of the 8dB active range defined the Object properties HDR tab.

The Envelope Editing Sensitivity value directly relates to the number of data-points

in the editor that are represented and tracked when Envelope Tracking is enabled.

Reducing the sensitivity reduces the level of detail that is tracked by the HDR system

at runtime. Data-points can be modified by manually modifying their position in the

Source Editor.

HDR Audio Wwizardry

225

Enabling Source Normalization

Non-destructive Source Normalization can be enabled at either the Parent or

overridden at the child level of the Actor-Mixer Hierarchy for any sound or group

of sounds. Enabling loudness normalization provides normalization of any sources

by applying an automatic gain calculated from the measured loudness of the source

recording.

Enabling Loudness Normalization in the Source Setting tab of a Sound Object

To hear the results of Loudness Normalization, enable Loudness Normalization in

the Source Settings for Sound Objects contained within these Work Units:

• Ambient

• Character

• Combat

• Magic

Historically the practice of normalization has varied widely across different

development pipelines and audio engine methodologies. Enabling Loudness

Normalization as part of your mixing strategy gives you a reliable way to ensure that

two sounds playing at the same volume (e.g. -10 dB) will be perceived as playing at

exactly at the same level. In this way the sound content is uniformly prepared in a

way that inspires confidence during mixing.

HDR Audio Wwizardry

226

Designer Note

Loudness Normalization is applied to source files at a target value of

-23dB. Wwise analyzes the wave data, stores its loudness measurement

proportional to its RMS value, and then at run-time, applies gain to

the sound such that its loudness will be equal to -23 dB. For example, a

sound turns out to have a loudness of -35 dB; at run-time, we "normalize

it" by applying a gain of +12 dB.

Using Make-up Gain

Make-up Gain defines an amount of gain applied after the HDR processing. This

gain does not influence the HDR dynamics, in the way that adjustments made with

standard volume sliders do. Make-up Gain can be used to offset sound levels relative

to the HDR window. It can also be used to adjust loudness normalization.

Using Make-Up Gain to offset volume levels for a Sound Object

The ability to control the volume of a source without affecting the HDR response is

a powerful tool that gives precise control over the mix. The abstraction of volume

values becomes a natural process as the mix is iterated during production. Once

volumes for sounds are set within the HDR system, this additional volume control

ensures that the mix can be fine-tuned without disturbing the overall composition.

HDR Audio Wwizardry

227

Using the Voice Monitor to Understand HDR Audio

Being able to see the effect of the moving window on sounds routed through the

HDR bus allows for visualization that helps to clarify the process. Using the Voice

Monitor view illustrates the window movement, the volume of sounds, and how the

envelope of the loudest sound affects the HDR system.

Opening the Voice Monitor View

Begin by opening a Voice Monitor view from the Views Menu in the Menu Bar.

Opening the Voice Monitor View

To see and understand the different behaviors of HDR in action, set the monitoring

mode to either: Bus Input, Bus Output, or All voices.

Viewing the different monitoring modes in the Voice Monitor

A HDR Bus can then be assigned to the Voice Monitor using either drag and drop or

the Project Explorer Browser.

HDR Audio Wwizardry

228

Assigning a mix bus can be done using drag and

drop (1) or using the Project Explorer - Browser (2)

After these properties of the Monitor View have been assigned, any audio running

through the selected bus is monitored when capturing from the authoring

application or from a remotely connected game running on any development

platform.

Auditioning Sounds in the Soundcaster

In the Wwise Project Adventure, open the Soundcaster View from the Views Menu

and select the default “Soundcaster Session” from the list of sessions:

Selecting the default Soundcaster Session within the Soundcaster

The Soundcaster Session contains a set of Events that can be used to audition sounds

within the Project and additional Events can be added to further experiment with the

different categories of sound.

HDR Audio Wwizardry

229

The default Soundcaster Session included in the Wwise Project Adventure

Capturing Data from Wwise

Now that the Soundcaster is ready for auditioning sounds within the HDR system,

use Wwise to capture data from the project. To capture data in the authoring

application, click Start Capture. Use the Follow Capture Time button to follow along

with the capture time to see what happens in real-time.

Selecting Start Capture and Follow Capture Time in the Voice Monitor

Once capturing has begun, any sounds passing through the selected bus are

displayed according to their current volume. Sounds can be auditioned from the

Transport, Soundcaster, or from a locally or remotely connected game running on

any development platform.

Begin auditioning by selecting the Play icon for the Play_Ambient_day_night Event.

From this point, other Events can be auditioned and their effect on the HDR window

can be seen represented in the Voice Monitor. It is worth enabling the envelope

for the magic sounds to see the difference between settings. Adjusting the HDR

Threshold or Ratio will give additional insight into how dynamic range can be

modified within the HDR system.

Here's a look at a captured sequence of Events using the Voice Monitor:

HDR Audio Wwizardry

230

Monitoring the Bus Input during a capture using the Voice Monitor

Monitoring the Bus Output during a capture using the Voice Monitor

Wwise has implemented an end-to-end solution for authoring and auditioning the

HDR system, the results of which can be seen in the Voice Monitor. Being able to

test out different values offline within the authoring application and immediately

visualize their effect on the mix bring unprecedented clarity to the inner working of

the created system. This ability to not only hear the resulting mix but see how sounds

affect each other is the key to making optimal mix decisions and knowing how they

affect the final output.

HDR Audio Wwizardry

231

HDR Audio Summary

Because HDR is applied selectively to a parent bus within the Master-Mixer

hierarchy, it need not be the only technique used for dynamically mixing the game.

HDR is one of six mixing techniques within the authoring application that include:

set-volume mixing, state-based (snapshot) mixing, auto ducking, RTPC, side-

chaining, and high dynamic range mixing. Striking the right balance between

different mixing systems allows you to creatively orchestrate your interactive mix and

help solve mix-related problems, create customized mixing solutions, and address

any project needs that may arise during production.

Throughout this chapter we have:

• Described the theory behind High Dynamic Range audio within Wwise.

• Given background for the application of HDR using the Wwise Project Adventure

as an example.

• Provided an fictitious scenario which illustrates the fundamentals of HDR audio.

Stepped through the process of:

• Setting up the HDR Audio Dynamic Range Window.

• Enabling HDR Audio in the Master-Mixer Hierarchy.

• Setting up the HDR Audio Dynamics Properties.

• Enabling HDR Audio in the Actor-Mixer Hierarchy.

• Enabling Envelope Tracking.

• Editing a Waveform Envelope.

• Enabling Source Normalization.

• Using Make-up Gain

• Using the Voice Monitor to Understand HDR Audio.

• Capturing Data from Wwise to view HDR Audio in the Voice Monitor.

Also touched on:

• A fictitious scenario illustrating the fundamentals of HDR audio.

Throughout this section we have created the following objects:

• The Project Settings Volume Threshold

• Master-Mixer “World_Sound” Audio Bus

• Volume and Loudness Normalization for Sound Objects within the following

Work Units:

• Ambient

• Character

• Combat

• Magic

232

Chapter 11. Getting Set Up for Adventure

Overview .. 233

Work Unit Management .. 234

Establishing a Naming Convention Early .. 234

Logical Grouping of Work Units ... 234

Creating Work Units with Sharing in Mind .. 234

Grouping Objects in the Actor-Mixer Hierarchy .. 235

Setting the Audio Channel Configuration .. 237

Speakers vs Headphones Panning Rules .. 237

Creating Simulations with the Soundcaster .. 240

Project Settings .. 242

Project Settings - General Tab ... 242

Workgroup Plug-in Configuration .. 242

Audio File Locations .. 244

Default Conversion Settings .. 247

Defining the Sample Rate Automatic Detection Settings 247

Obstruction/ Occlusion ... 248

Setting Obstruction and Occlusion ... 250

Motion ... 252

Generating a Motion Source from an Existing Audio Signal 253

Generating Motion Using a Motion FX Object ... 254

Customizing Layouts ... 256

Layout Docking ... 257

View Docking .. 259

External Sources .. 262

SoundBanks and SoundBank Generation ... 263

Creating a SoundBank ... 263

Populating and Managing the Contents of SoundBanks 264

Excluding Elements from a SoundBank .. 265

A New Approach for SoundBank Management .. 266

Conversion Settings ... 267

The SoundBank Definition File .. 267

Using the Integrity Report .. 269

Using the File Packager ... 270

Downloadable Content (DLC) .. 271

Setup Summary ... 272

Setup Additional Resources ... 273

Getting Set Up for Adventure

233

Overview

Like any well planned adventure, being prepared for the trials and tribulations you'll

face along the way starts with what you bring with you. A well thought out plan of

attack can make for smooth travel along the road to development.

This chapter will take you through the process of:

• Work Unit management

• Grouping objects in the Actor-Mixer hierarchy

• Project settings

• Workgroup settings

• Audio file locations

• Default conversion settings

• Obstruction and Occlusion

• Language Manager

• Platform Selector

• Customizing Layouts

• Motion

• SoundBank and SoundBank generation

• Conversion settings

• Integrity Report

• Using the file packager

• Preparing for downloadable content (DLC)

When building a hierarchy there are a couple of key considerations to keep in mind.

Getting Set Up for Adventure

234

Work Unit Management

Establishing a Naming Convention Early

Establishing a naming convention for work units, sound objects, and audio files can

help identify the type of asset and possibly its orientation within the project at-a-

glance. In larger projects, being able to visually distinguish different types of assets

based on naming alone can really speed up the workflow. Throughout this project

we’ve attempted to adopt a naming standard that is consistent and transparent.

Logical Grouping of Work Units

While it's easy to begin dragging and dropping .wav files directly into the Actor-

Mixer hierarchy, when planning for a larger project you and your project would

benefit from some additional thought on the matter. A simple hierarchy may consist

of a single work unit that encompasses all of the game objects. Alternately you

might choose to have a work unit for each type of sound, for example: Ambiance,

Characters, Combat, UI, Voice, etc. These work units can contain Game Objects of

any type and can be further organized within folders or actor-mixers.

Creating Work Units with Sharing in Mind

It's important to note that work units represent individual files within the Wwise

project folder. These files are readable via a text editor and contain the information,

properties, and relationships specified within the tool. Hierarchies of nested work

units can now be created in Wwise and organized in physical folders and subfolders.

If work units are present in a subfolder for a specific category (ex: Actor-Mixer

hierarchy), they will be loaded with the project. This results in a finer granularity

of files available for source control which simplifies development in a multi-user

environment.

Designer Note

When working with a large audio team, it is often necessary to create

enough work units to allow for a single person to work exclusively with

a given work unit for a duration of time. If you are using the integrated

Wwise Source Control solution, it is important to make sure you create a

hierarchy that will work well with the file permissions established by the

programmer.

Getting Set Up for Adventure

235

Grouping Objects in the Actor-Mixer Hierarchy

The actor-mixer is the ultimate memory and CPU saver because some of the actor-

mixer’s properties, such as positioning and RTPCs, are shared by all of its child

objects. When considering how to organize different sound objects, think about

grouping within actor-mixers to:

• Share property settings so they are processed only once.

• Limit overrides to avoid processing the overrides for each object.

To optimize memory usage, consider grouping objects into actor-mixers to share the

following properties:

• Positioning

• RTPCs

• States

• Randomizers

Let's say you have an actor-mixer containing 10 sounds and you want to set the

sound positioning to 3D. You could set the sounds individually to 3D by using the

override parent option for each sound. However, doing it this way uses 10 times

more memory at run time than if you had set the actor-mixer positioning properties

to 3D. Now if you wanted some of the sounds to be 2D, you would still be optimizing

memory if you set the actor-mixer's positioning to 3D game-defined. In this case

you would override the actor-mixer and apply 2D to the specific sounds because 2D

sounds do not require additional memory.

Getting Set Up for Adventure

236

Illustrating the memory saving benefits of hierarchy property inheritance

While the actor-mixer is usually your best choice, in certain situations, you can

decide to apply properties in containers to optimize memory consumption. If, you

are only applying positioning to specific objects within a container, for example,

footstep sounds in a random container, you could save memory by applying the

positioning properties to the container and not to the parent actor-mixer. If,

however, you want all the objects in the structure to share the positioning properties,

you would apply these at the actor-mixer level.

Getting Set Up for Adventure

237

Setting the Audio Channel Configuration

System Default Channel Configuration

• From the menu bar, click Audio > System Default Channel Configuration

• By default, Wwise use the speaker setup configuration from the windows control

panel. Select this option to choose value selected in the Windows control panel.

Stereo Channel Configuration (Speakers)

• From the menu bar, click Audio > Stereo Channel Configuration (Speakers)

• For more information on panning rules (speakers, headphones), refer to Speakers

vs Headphones Panning Rules in the next section.

Stereo Channel Configuration (Headphones)

• From the menu bar, click Audio > Stereo Channel Configuration (Headphones)

• For more information on panning rules (speakers, headphones), refer to Speakers

vs Headphones Panning Rules in the next section.

5.1 Channel Configuration

• From the menu bar, click Audio> 5.1 Channel Configuration

Designer Note

You can select 5.1 Channels Configuration while Windows control panel

is set to stereo. Be aware, that this might force directsound to downmix

from 5.1 to stereo.

Speakers vs Headphones Panning Rules

In Wwise there are two different panning rules: Headphones and Speakers. By

default, all platforms use the speaker panning rule with the exception of the

handheld consoles that use the headphone panning rule. The difference in between

the two modes is subtle but helps to provide a realistic and accurate audio experience

depending on your listening set-up. This setting can be auditioned in Wwise but also

can also be set in the game at run-time.

Getting Set Up for Adventure

238

Headphone Panning Rule

Loudspeaker Panning Rule

To audition the two modes:

• From the menu bar, click Audio > Stereo Channel Configuration (Speakers)

• From the menu bar, click Audio > Stereo Channel Configuration (Headphones)

Getting Set Up for Adventure

239

Programmer Note

You can also set the panning rule in the game, please refer to

AK::SoundEngine::SetPanningRule in the sound engine documentation.

Getting Set Up for Adventure

240

Creating Simulations with the Soundcaster

At any point in the development process you might find it helpful to build a

simulation using the Wwise objects and events you have been working on. To

accomplish this, Wwise has created a simulation environment called the Soundcaster

where you can play back sound, music, and motion structures asynchronously. This

means you can control what plays and when. This can be very handy for testing

events, mixing in real time, and so on. The Soundcaster is a powerful tool that can be

used for:

• Prototyping and experimenting.

• Developing a proof of concept.

• Auditioning sounds, music, and motion simultaneously.

Since you can simulate in Wwise alone or by remotely connecting to a game, the

Soundcaster provides you with many different uses for your simulation. For any

simulation you can choose to:

• Selectively audition the audio or motion for each platform.

• Audition pre-converted audio files.

• Profile your audio and/or motion as it is playing back.

• Mix and test your audio and motion in Wwise by manually simulating the game

action.

• Profile your audio and motion in game and in Wwise.

• Experiment with the sounds, music, and motion objects associated with a game

object.

• Mix and test your sounds, music, and motion in game.

The Soundcaster consists of three areas:

• Master controls

• Game syncs

• Objects and events

Getting Set Up for Adventure

241

Soundcaster showing the three main areas of simulation interaction

Using the different areas of the Soundcaster, you can work with its mixing and

playback functionalities when you build your simulation.

For more information on using the Soundcaster:

Wwise Help > Finishing Your Project > Creating Simulations

Video Tutorial - Wwise Quick Tip - Transport and Soundcaster

http://www.youtube.com/watch?v=PXT6V0dv8r4

Getting Set Up for Adventure

242

Project Settings

There are several aspects of the Project Settings that define the default behavior for

sound throughout the project.

Project Settings - General Tab

Through the general tab you can activate development platforms, set the volume

threshold, and set the maximum voice instances for each platform.

Defining active platforms and managing platform settings

Volume Threshold:

The volume threshold is the default volume level below which voices are managed

by behaviors defined on the Advanced Settings tab of the Property Editor, essentially

determining the volume when voices will either be killed or sent to virtual voice.

Max Voice Instances:

This value defines the maximum number of simultaneous voices that can be active

at the same time in the entire project. Virtual voices do not count as active voices.

Over this limit, voices with the lowest priority will adopt their virtual behavior. If

priorities are equal, older sounds will be considered having a higher priority.

Workgroup Plug-in Configuration

The Workgroup plug-in allows you to specify a source control solution and specify

the settings. In your project development environment, you may already be using

a source control system, such as Perforce or Subversion, to effectively manage your

assets and other types of project files.

Getting Set Up for Adventure

243

Specifying a source control plug-in for managing project files from Wwise

The following files within the project can be managed by a source control system:

• Wwise project file - the .wproj file.

• Wwise work units - the .wwu files, including the Default work units.

• Originals folder - the folder that contains the original sound files that were

imported into Wwise.

• Generated SoundBanks - the SoundBank files generated for each platform and

language.

Designer Note

The .cache folder located in the project directory is a local working folder

for Wwise. The contents of the .cache folder should not be added to a

source control system because it may cause unexpected behaviors in

Wwise.

Throughout the development of your game, you can view the status of your project

file (.wproj), work unit files (.wwu), and audio files in the File Manager. If you

are using Perforce, Subversion, or another Workgroup plug-in, you will be able

to perform source control functions directly in Wwise. All Wwise project files,

including the individual work units, are XML-based, which means you can use your

source control system to easily manage these files as well.

Getting Set Up for Adventure

244

Designer Note

For more information about using a Workgroup plug-in in Wwise,

refer to "Managing Project Files Using a Workgroup Plug-in" in the help

documentation.

When you are working as part of a workgroup and are using a source control system

to manage the files in your project, you should always be aware that others are

working on the same project and that there may be merge conflicts that need to

be resolved. This is why it is important to sync and merge your work often and to

communicate frequently with your team members about the work you are doing.

Designer Note

For a complete list of best practices, refer to “Workgroup Tips & Best

Practices” in the help documentation.

For more information on workgroups:

Video Tutorial - Workgroup management in Wwise using Perforce

Audio File Locations

A custom location for original and cached audio files can be set for the project as

well as an override location for the current user.

http://www.youtube.com/watch?v=LjD_wXQzhac&hd=1

Getting Set Up for Adventure

245

Defining locations for original audio files used by the project

Overriding the user location can be useful in the following types of situations:

• You temporarily do not have access to the Originals/Cached folder.

• You do not have permission to alter the contents of the Originals/Cached folder.

• You need to create a temporary location for the Originals/Cached folder without

changing the location of the project's Originals/Cached folder.

When you import a file into the project, a copy of the original asset is stored in the

Originals project folder. Since these assets are usually shared by several people on the

team, this folder can be located anywhere on the network and can easily be managed

by a source control system.

Getting Set Up for Adventure

246

The asset versions created for the various game platforms are stored locally in each

user's project cache folder. This allows each user to manage their own platform

versions and to experiment with different conversion settings.

The project's cache folder contains intermediate data generated by Wwise during

audio file conversion and SoundBank generation. Its location is initially set to

'.cache/' inside the project's directory when a new project is created.

Both types of files can be played back in Wwise. The original pre-converted files will

be played back whenever the Original control is activated in the Transport Control or

Soundcaster. When the Original control is not active, Wwise will attempt to play the

converted file, if one exists.

Designer Note

There are some restrictions to playing converted files in Wwise. When

you convert an audio file for a particular platform, it is converted to meet

the specific hardware requirements of that platform. As a result, you may

not be able to play back these converted files in Wwise when a platform,

other than Windows, is selected.

Getting Set Up for Adventure

247

Default Conversion Settings

Default conversion settings

The default conversion settings in Project Settings specifies the name of the ShareSet

that will be used as the project’s default. When a new object is created, the Default

Conversion Settings are used only if the new object is a top-level parent object. If the

new object is a child of another object, it will inherit the conversion settings assigned

to the parent.

Defining the Sample Rate Automatic Detection Settings

As part of the Project Settings, you can define the size of the Hanning window

used by the FFT algorithm as well as the threshold levels for three different quality

settings: High, Medium, and Low. These threshold settings are used when you select

Auto High, Auto Medium, or Auto Low as the sample rate conversion method.

For more information about conversion settings:

Wwise Help > Setting Up Your Projects > Working with Projects > Defining your

Project Settings > Defining the Conversion Settings for Your Project

Getting Set Up for Adventure

248

Obstruction/ Occlusion

A typical condition of most game environments is having a game object become

either obstructed by another object (such as a wall or beam), or occluded in a room

where the listener can only hear a few muffled sounds leaking through the walls.

The following diagrams illustrate examples of occlusion and obstruction.

Example of an Obstruction

Obstruction can be modeled by applying a volume control and/or a Low Pass Filter

(LPF) affecting only the direct path of the signal. The environmental reflections are

unaffected.

Getting Set Up for Adventure

249

Example of an Occlusion

Occlusion can be modeled by applying a volume control and/or a LPF affecting both

the direct path and the environmental reflections of the signal.

Designer Note

Obstructions and occlusions can happen simultaneously and are modeled

with the direct path being affected by both the obstruction and occlusion

value. However, the reflection path is affected by the occlusion value only.

Here is a diagram of the obstruction/occlusion processing pipeline inside the sound

engine:

Getting Set Up for Adventure

250

Occlusion Processing Pipeline

Setting Obstruction and Occlusion

The game engine is responsible for determining the obstruction and occlusion

values, which it does using the position of the objects and listeners in relation to the

game's geometry.

Programmer Note

The obstruction and occlusion values for each game object affecting

each listener must be passed down to the sound engine from the game

programmatically.

In the Obstruction/Occlusion tab of the Project Settings dialog box, you can enable

and define the default volume and Low Pass Filter (LPF) curves for obstruction and

occlusion for each active platform in the project. Sound designers can also enable or

disable the usage of any curve to best suit their performance and realism needs.

Getting Set Up for Adventure

251

Customizing Obstruction and Occlusion Curves in the Project Settings

Using the curve of this snapshot, setting an obstruction value of 1.0f (100%) will

produce a volume change of -50dB on the source object.

Designer Note

It is a good practice to always define curves in a linear fashion to

minimize CPU and memory usage in the project. Keep curves as simple

as possible to begin with and customize only as needed.

Getting Set Up for Adventure

252

Motion

It begins with an earth shaking rumble as the dragon emerges from an underground

lair, followed quickly by the pounding of gargantuan footsteps racing towards the

final showdown. With the expectation of a soundtrack to match the intensity of this

scenario, it seems a perfect fit for the use sound to drive controller vibration.

Wwise offers a complete pipeline for creating and integrating motion in your game.

By implementing a comprehensive pipeline solution for motion, similar to the one

that exists for building audio, Wwise allows you to:

• Create sophisticated and realistic motion effects with a very short learning curve.

• Integrate motion easily into a game without significantly affecting the

performance of the game or sound engine.

• Use the same features as audio to build and integrate motion.

• Create motion effects for the same type of device on various platforms without

additional work.

• Add or remove the motion component easily based on the requirements of your

game.

Before creating motion effects in the project, the types of motion devices need to be

enabled within the Project Settings in order to create motion effects.

Enabling motion devices in the Project Settings

After a motion device is enabled, you can do the following in the project:

Getting Set Up for Adventure

253

• Create sources for Motion FX objects using media files or motion generators.

• Include motion data for the selected device within SoundBanks.

At a very basic level, motion data is generated in Wwise from a source. This source

can either be an existing media file, a new media file, or a Motion generator plug-

in. After you have decided which motion devices will be supported by the game, you

must then decide which method you will use to generate motion.

In Wwise, there are two different methods for creating a motion source:

• Using an existing audio signal.

• Using a Motion FX object.

Generating a Motion Source from an Existing Audio Signal

When you convert an existing audio signal into a motion source, the audio signal is

split in two at run-time after both RTPCs and effects have been applied. The split is

done so as not to affect the original sound. Since audio has a much larger spectrum

than motion, the higher frequencies are filtered out using a low pass filter. The signal

is then re-sampled using a much lower sample rate to create the motion source.

Enabling routing to a Motion Bus from an existing sound object

Designer Note

The LFE channel is ignored when generating motion from an existing

audio source.

Since the motion source is generated from an existing audio source, the motion is

tied to the audio playback in game. This means that the motion source does not

require a separate event to be triggered in game. It also means that the motion source

is affected by the same properties, behaviors, game syncs, and so on, as the audio

object.

Getting Set Up for Adventure

254

Designer Note

You can't generate a motion source from an existing audio source on the

Wii platform. To generate motion on the Wii, you have to use Motion FX

objects and the Motion Generator plug-in.

Generating Motion Using a Motion FX Object

Another way to generate motion is by creating special Wwise objects, called Motion

FX objects. These objects, like sound objects, contain a source. The motion source

can be created from a Motion Generator plug-in.

When using Motion FX objects, you can build sophisticated motion structures, using

containers and actor-mixers, to define the properties and behaviors of the motion

effects. Since these motion effects are not necessarily tied to the audio in the game,

they can be triggered at any point in game by their own events.

After enabling the use of Motion FX in the Project Settings, you can begin adding

Motion FX objects with a Motion Generator source.

Adding a Motion Generator source to a Motion FX object

The Motion Generator source plug-in gives access to the authoring of motion effects

based on duration and speed, in addition to envelope properties. A default setting

can be used to define small and large curves for Motion FX, which are inherited for

all dual-motor controller types. These default settings can be overridden on a per

controller basis in order to fine-tune the motion experience.

Getting Set Up for Adventure

255

Motion Generator source plug-in editor

Of course, there will be situations where one method will be preferential over

another. For a further discussion on the benefits of each of these methods, refer to

"Creating Motion for Your Game" in the Wwise help documentation.

For additional information about Wwise Motion:

Video Tutorial - Wwise Motion

http://www.youtube.com/watch?v=tUoMszXw4zo&hd=1

Getting Set Up for Adventure

256

Customizing Layouts

Multiple layout views are available from the menu bar to help you navigate different

aspects of the Wwise project workflow. Layouts can be modified by adding or

removing any of the views available to streamline your workflow.

Clicking and dragging on the view's title bar will transform it to a floating view and

show possible docking locations.

Clicking and dragging the view's title bar in order to move it

Views can be docked on the four sides of both the layout and each individual docked

view.

Getting Set Up for Adventure

257

Layout Docking

Docking locations in blue, along the border of

the layout window, turn green when hovered over

Getting Set Up for Adventure

258

An example of the Mixing Desk view docked at the top of the layout

Getting Set Up for Adventure

259

View Docking

Docking locations on the four sides of each

docked view turn green when hovered over

Getting Set Up for Adventure

260

An example of the Randomizer view docked at the top of the Property Editor view

Layouts can be selectively reverted to the default settings at any time from the

Layouts menu on the menu bar.

Getting Set Up for Adventure

261

Resetting the factory layout settings for the Designer layout

Customizing layouts to maximize screen real estate in a multi-monitor setup is a

great way to put the views you need in place for a streamlined workflow.

For more information about layouts:

Video Tutorial - Managing Layouts

http://www.youtube.com/watch?v=ueCl7IVFbks&hd=1

Getting Set Up for Adventure

262

External Sources

External Sources are a special type of audio source that you can put in a Sound object

in Wwise. It indicates that the real sound data will be provided at runtime. This is

very useful when managing a large amount of dialogue lines that would otherwise

need a Sound and an Event for each, which would then need to be included in

SoundBanks. It is also very useful if the dialogue lines are already managed through

another system such as an AI-driven speech generator.

Depending on how you manage the dialogue in the project, there may be additional

runtime memory savings because the External Source plug-in allows you to play

dialogue without having to load many voice assets into memory at any given time.

The External Source plug-in works as follows:

• A Sound Voice 'template' is created in Wwise using the External Source plug-in.

This template represents a series of audio files with common properties.

• The External Source plug-in can take full advantage of the power and flexibility of

the project hierarchy, by placing it within containers, actor-mixers, applying states,

RTPCs, effects, and so on.

• A play event is created that calls the external source.

• The location and conversion settings of the pool of external audio assets that can

be used by the External Source plug-in are defined in the External Sources List file.

This file is a very simple XML file that contains the location of the external audio

assets that need to be converted along with the conversion settings you want to

use. The location of this file is defined in the Project Settings dialog box in Wwise.

• At runtime, the game calls the External Source and then associates the template

with one of the external audio files. The actual audio file that is played is left

entirely up to the programmer. It is important to note that the management of the

source audio files is done external to the Wwise sound engine. While this involves

more work, it also gives you more flexibility.

Designer Note

Most of the work related to this feature is performed by the audio

programmer within the SDK. For more information, refer the Wwise

SDK documentation.

Getting Set Up for Adventure

263

SoundBanks and SoundBank Generation

SoundBanks keep all of your audio files and information about how they are played

back bundled together in files that can be easily loaded and unloaded with the

demands of the game. Regardless of the systems employed on the game side for

managing available memory and resources, Wwise SoundBanks can be generated to

support most implementations.

Designer Note

A SoundBank can contain any number of events, Wwise objects, and/or

converted media files. At particular points in the game, one or more of

these project elements will be loaded into a game's platform memory in

anticipation of specific sounds or motion objects being triggered.

SoundBank creation is better handled through the SoundBank Layout (F7) that gives

you access to the SoundBank Manager and SoundBank Editor.

Creating a SoundBank

To begin with, we’ll create a new SoundBank called General. Start by selecting the

default work unit from the SoundBanks tab in the Project Explorer. This enables

you to add a new SoundBank from the Project Explorer toolbar by clicking on the

SoundBank icon. Alternately, a SoundBank can be created from the contextual menu

for a SoundBank work unit or by using shortcut keys.

Creating a General SoundBank

Getting Set Up for Adventure

264

SoundBank information displayed in the SoundBanks Manager

The SoundBank Manager displays the list of SoundBanks that have been created.

It also displays information about each SoundBank, including its current size,

the amount of free space left, and the type or contents of the SoundBank. Before

generating your SoundBanks, you can update them, define custom user settings, and

specify for which platforms and languages the SoundBanks will be generated.

Populating and Managing the Contents of SoundBanks

When you double-click a SoundBank in the SoundBank Manager, information

related to the selected SoundBank is automatically displayed in the SoundBank

Editor.

SoundBank Editor showing manually added events

The SoundBank Editor, which is where you populate and manage the contents of

your project’s SoundBanks, is divided into four different tabs:

Getting Set Up for Adventure

265

SoundBank Editor - Add Tab - displays only the actual events, hierarchies, work

units, and folders that were added to the SoundBank. Any corresponding child

objects that are also automatically added to the SoundBank are only displayed on the

Edit tab. On the Add tab, you determine what types of information and/or media

will be included in the SoundBank per hierarchical element.

SoundBank Editor - Game Syncs Tab - displays a list of game syncs, except game

parameters and arguments, referenced by the events and sound structures that

have been included on the Add tab. On this tab, you can filter out sound structures,

events, and media files based on their relationship with a particular game sync.

SoundBank Editor - Edit Tab - displays a detailed list of each individual event,

object, and media file, including all child objects that are associated with the

hierarchical project elements on the Add tab. You can filter the list by language and

object type and then deselect any project elements that you want to exclude from the

SoundBank.

SoundBank Editor - Details Tab - displays detailed information about all aspects of

the SoundBank, including memory size, file size, SFX versus Voice size, as well as the

number of missing and replaced files, if any.

Excluding Elements from a SoundBank

Specific elements within a SoundBank can be selectively excluded by clearing the

corresponding check box.

Manually excluding individual sound objects from a SoundBank

Child sound objects can also be removed from the SoundBank by excluding the

parent object.

Getting Set Up for Adventure

266

Manually excluding parent and child sound objects from a SoundBank

Once the SoundBanks have been populated they can be generated and used by the

game.

A New Approach for SoundBank Management

In an attempt to be as flexible as possible and to meet the requirements of almost any

type of game, Wwise has introduced a new approach for managing the SoundBanks

in your game. This new approach does not invalidate the usefulness of the original

method (explained later in this section), but simply gives you more control and

flexibility so that you can better manage the requirements of your games.

The new approach offers three major improvements over the existing traditional

method:

• You can populate your SoundBanks with not only events, but also structural

content (sounds, containers, actor-mixers, and so on), work units, and folders.

• You can determine what types of information will be included in the bank. This

means that you can populate a bank with only media, structural data, event

content, or any combination of the three. For example, you may want to create a

bank that contains only the media associated with a specific event.

• You can include or exclude specific items from a SoundBank.

The main advantage of this new approach is that it allows media content to be split

into multiple memory banks. For example, let's say the music for the entire game

is started using one single event. Using the traditional method, you would add

the event to the bank, which automatically adds all the corresponding in-memory

sounds and pre-fetched media, including the pre-fetch for the song that only plays

at the end of the game. Storing all the media in memory for the entirety of the game

seems very inefficient. Using the new approach, however, you can better manage

your memory by splitting the music media into multiple banks so that it would be

loaded only when sounds are likely to be played.

Getting Set Up for Adventure

267

By splitting the media into multiple banks, you can also prioritize the media that is

to be loaded. For example, in an environment with limited memory, you will want

to load only the most important media. Non-critical media could be stored in a

separate bank that would be loaded into memory only when there was enough room.

Previously, both critical and non-critical media files were contained in the same

bank. If the bank was too large to load into memory, none of the sounds would play,

including the critical ones.

The Wwise SDK Bank Management Samples describe the different methods that can

be used to generate and integrate the banks in your game. In a single game, you can

use one or a combination of the different methods. Since every game is different, the

method or methods you choose will depend on the specific requirements of your

game. Remember that all solutions will work, but the strategy you choose should

take into consideration the memory usage, the I/O access, and the ease of integration

in game. Each method has its advantages and drawbacks, so in most situations, it will

be a question of balance between memory usage and ease of integration.

Additional SoundBank integration details:

Wwise SDK - Windows > Sound Engine Integration Walkthrough > Integrate Wwise

Elements into Your Game > Integrating Banks > Integration Details - Banks

Conversion Settings

Conversion settings are managed as ShareSets and created based on the needs of your

project and the requirements of each active platform. Many of your choices here

can have a big impact on the performance and quality of your audio project. After

applying conversion settings ShareSets to the objects in your project, you can go back

and adjust your ShareSets at any time to achieve the best possible quality within the

constraints of the platform and the game. When you import audio files you can also

speed up the process by re-using ShareSets.

For more information about ShareSets:

Wwise Help > Finishing Your Project > Managing Platform and Language Versions

> Authoring Across Platforms > Converting Audio Files > Creating Audio

Conversion Settings ShareSets

Video Tutorial - Conversion Settings ShareSets

The SoundBank Definition File

Outside of the manual generation of SoundBanks, another method that is becoming

common is the use of the SoundBanks Definition File as a way to automatically

generate SoundBanks based on level, character, object, material or any information

from the game. A definition file can be generated automatically by external

applications, such as a game level editor, or manually by creating a tab delimited text

http://www.youtube.com/watch?v=Sjza1ChtCEk&hd=1

Getting Set Up for Adventure

268

file that lists all the events in your game, classified by SoundBank. When SoundBanks

are generated, Wwise packages all the Actor-Mixers, Containers, Sounds, and so

on that are used by the events contained within each SoundBank. If some of the

Sounds in a SoundBank are Sound Voices, then a different version of the SoundBank

is generated for each language supported by the Wwise project.

For more information on SoundBanks:

Video Tutorial - Creating and Managing SoundBanks

Video Tutorial - Building SoundBanks

http://www.youtube.com/watch?v=ldzQvQeWtno&hd=1
http://www.youtube.com/watch?v=VhQ_nQQT--g&hd=1

Getting Set Up for Adventure

269

Using the Integrity Report

The Integrity Report serves as a map to the underworld, that is, if the underworld

were populated by errors and inconsistencies instead of treasures and foes. The

Wwise Integrity Report is where a report can be generated that contains information

about the project, including errors and how to resolve them.

A view of the Integrity Report listing information,

possible errors, and information on resolution.

The Integrity Report lists errors such as:

• Missing media files

• Missing audio or motion sources

• Plug-in problems

• Missing events in SoundBanks

By double-clicking an error in the Error list, you can open a corresponding Wwise

dialog box where you can resolve the error, or receive further information about how

to handle it.

You can also filter the Integrity Report to display only the types of information that

you specify, such as details about the following:

• Platforms

• Languages

• Audio files and sources

• Hierarchies

• References

• Optimizations

Often the integrity report can highlight areas of a project that need additional

consideration or a deeper understanding.

Getting Set Up for Adventure

270

Using the File Packager

The File Packager is a stand-alone utility that groups the SoundBanks and/or

streamed media files for a Wwise project into one or more file packages to be used

for a specific platform. File packages can also help you better manage language

versions as well as downloadable content that is made available post release.

File packages can be created that include any of the following:

• SoundBank files only

• Streamed media files only

• SoundBank files and streamed media files

All information about a Wwise project's SoundBanks and streamed media files

can be retrieved by importing the SoundBanksInfo.xml file into the File Packager.

The SoundBanksInfo.xml file is created automatically by Wwise each time the

SoundBanks are generated.

The File Packager can be used to create your file packages manually, or the process

can automated by using a command line to run the File Packager as part of

SoundBank generation. This command line can be defined at the project level or as a

custom SoundBank user setting.

For more information about the File Packager:

Wwise Help > Finishing Your Project > Managing File Packages

Wwise Knowledge Base - Using file packages

Wwise Knowledge Base - How do LoadBank/UnloadBank and PrepareEvent work

together?

Wwise Knowledge Base - How to avoid duplication of source files when a sound

exists in multiple SoundBanks

Video Tutorial - File Packager

http://kb.gowwise.com/questions/87/Using+file+packages
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://www.youtube.com/watch?v=LA5MnSNcUlw&hd=1

Getting Set Up for Adventure

271

Downloadable Content (DLC)

It has become a common development strategy for many games to plan for content

that will become available after a game has been released. Often, this strategy is

included in the schedule for creating a game and, if properly planned for, can be a

seamless experience for adding additional content.

One key aspect of developing content to be distributed after release is: All DLC

content must be created using the same Wwise Project that was used for the main

release. Also, to ensure compatibility, the same Wwise version must be used for the

Main and DLC releases. A basic scenario for managing DLC can be found in the

Wwise Knowledge Base and also includes considerations and limitations involved

with preparing your project.

It is important to devote time to understand the process involved with preparing

for the eventuality of downloadable content. With the right approach, the ability

to modify implementation and include additional audio can enable new creative

potential after the initial release.

For more information on Downloadable Content:

Wwise Knowledge Base - Downloadable Content Overview

http://kb.gowwise.com/questions/227/Downloadable+Content+Overview

Getting Set Up for Adventure

272

Setup Summary

While the myriad of setup options and considerations can seem overwhelming at a

glance, the ability to prepare and modify the project to meet the needs of a particular

development methodology ensures that the functionality is available. Understanding

the fundamental concepts that run throughout the project can help prepare a road

worn veteran for the task at hand. Armed with the tools to forge your own way on

the path, a limitless vista of potential awaits.

Throughout this chapter we have discussed:

• Work Unit Management

• Establishing a Naming Convention Early

• Logical Grouping of Work Units

• Creating Work Units with Sharing in Mind

• Grouping Objects in the Actor-Mixer Hierarchy

• Creating Simulations with the Soundcaster

• Project Settings

• Workgroup Plug-in Configuration

• Audio File Locations

• Default Conversion Settings

• Defining the Sample Rate Automatic Detection Settings

• Obstruction/ Occlusion

• Setting Obstruction and Occlusion

• Motion

• Customizing Layouts

• Layout Docking

• View Docking

• External Sources

• SoundBanks and Bank Generation

• A New Approach for SoundBank Management

• Conversion Settings

• The SoundBank Definition File

• Using the Integrity Report

• Using the File Packager

• Downloadable Content (DLC)

Getting Set Up for Adventure

273

Setup Additional Resources

Video Tutorial - Workgroup Management in Wwise Using Perforce

Video Tutorial - Wwise Motion

Video Tutorial - Managing Layouts

Wwise Help > Finishing Your Project > Managing Platform and Language Versions

> Authoring Across Platforms > Converting Audio Files > Creating Audio

Conversion Settings ShareSets

Video Tutorial - Conversion Settings ShareSets

Video Tutorial - Creating and Managing SoundBanks

Video Tutorial - Building SoundBanks

Wwise Knowledge Base - Using file packages

Wwise Knowledge Base - How do LoadBank/UnloadBank and PrepareEvent work

together?

Wwise Knowledge Base - How to avoid duplication of source files when a sound

exists in multiple SoundBanks

Video Tutorial - File Packager

Wwise Knowledge Base - Downloadable Content Overview

http://www.youtube.com/watch?v=LjD_wXQzhac&hd=1
http://www.youtube.com/watch?v=tUoMszXw4zo&hd=1
http://www.youtube.com/watch?v=ueCl7IVFbks&hd=1
http://www.youtube.com/watch?v=Sjza1ChtCEk&hd=1
http://www.youtube.com/watch?v=ldzQvQeWtno&hd=1
http://www.youtube.com/watch?v=VhQ_nQQT--g&hd=1
http://kb.gowwise.com/questions/87/Using+file+packages
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/148/How+do+LoadBank(){47}UnloadBank()+and+PrepareEvent()+work+together%3F
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://kb.gowwise.com/questions/107/How+to+avoid+duplication+of+source+files+when+a+sound+exists+in+multiple+soundbanks
http://www.youtube.com/watch?v=LA5MnSNcUlw&hd=1
http://kb.gowwise.com/questions/227/Downloadable+Content+Overview

274

Chapter 12. Workflow Optimization

Overview .. 275

Platform Inclusion / Exclusion .. 276

Linking / Unlinking Properties .. 277

Effects Rendering ... 278

Understanding the Different Types of Profiling in Wwise 279

Connecting to the Game ... 280

Capturing Data using the Profiler ... 281

Profiling Sound In-Game .. 282

Instance Limiting, Prioritization, and Virtual Voices .. 284

Playback Limits .. 285

Setting a Playback Limit per Game Object .. 285

Setting a Playback Limit on an Audio Bus .. 285

Global Playback Limit ... 286

Setting Playback Priority ... 287

Understanding Virtual Voice Behavior .. 288

Bridging the Game Engine Integration Gap ... 291

How Does SoundFrame Work? ... 291

Additional Game Engine Integration Techniques .. 292

Optimization Summary ... 293

Optimization Additional Resources .. 294

Workflow Optimization

275

Overview

Regardless of the game, genre, or platform you’re working with, one concern

that persists across all developments is the need to fit within the allotted memory

and processing budget. Whether working within the tight constraints of mobile

platforms, maintaining optimal CPU usage, or making sure the most important

sounds get the memory needed for variation, the process of optimization is one

that develops organically throughout development. It can be difficult to stay on

target while the game is constantly changing, but there are some valuable resources

available that can help keep things under control.

This chapter will take you through the process of:

• Platform Inclusion/ Exclusion

• Linking/ Unlinking properties

• Effects Rendering

• Understanding the Different Types of Profiling in Wwise

• Connecting to the Game

• Capturing Data using the Profiler

• Profiling the Sound In-GameSample rate automatic conversion

• Game Engine integration with SoundFrame

• Integrity Report

Workflow Optimization

276

Platform Inclusion / Exclusion

One of the first strategies to make the trimming of sound content a testament to

sanity is the ability to include/ exclude sound objects non-destructively from one

platform to another. By simply clearing the check box next to a sound object, the

parent and any child objects are removed and excluded from the build process

depending on the platform.

For instance, removing all of the Movement Sounds from a platform with less

memory in order to keep the game within its memory budget is as easy as removing

the check from the parent sound object in the hierarchy:

Movement included for the Windows platform

Movement excluded for the iOS platform

If you’re working on multiple platforms, you can use this technique to exclude sound

objects or variations. Using the platform selector, you can work within each of your

target platforms to maintain the necessary requirements.

Workflow Optimization

277

Linking / Unlinking Properties

By default, all sound and motion properties are set the same across all active

platforms. These properties are said to be linked across platforms and can be

selectively unlinked for any property on a per platform basis. This streamlines

the creation of consistent projects across all platforms. Whether you’re unlinking

properties in order to apply different mix settings, to remove DSP effects for a

specific platform, or any other reason, having a non-destructive workflow that

enables this ability is a benefit to any multi-platform development.

Unlinking the properties of a property causes the link indicator to become orange.

When defining the properties for various platforms, you can easily tell if the

properties are unlinked on another platform. The link/unlink indicator will be partly

orange indicating that it is partially unlinked.

Workflow Optimization

278

Effects Rendering

Another place where you may be able to gain back valuable resources is in the

rendering of any effects that are not actively modified by RTPC. Enabling rendering

for an effect applies the effects settings to the audio files during SoundBank

generation. While this adds to the overall size of SoundBanks, the reduction in CPU

can be beneficial when in short supply.

Rendering effects

Designer Note

Rendering time-based effects that may extend the duration of the file(s),

such as delay, reverb, or time stretch, results in large files being generated

in the SoundBank which saves CPU at runtime in exchange for additional

memory usage.

Workflow Optimization

279

Understanding the Different Types of Profiling in Wwise

The Wwise profiler is at the heart of most resource centered problem solving. There

are few things related to the audio engine that you can't ascertain by connecting the

running game to the Wwise authoring application and capturing key performance

information in real time. The profiler is a consistent barometer for the state of audio

in-game and gives access to a deep level of debug opportunities.

In Wwise you can perform two types of profiling:

• Game profiling

• Game object profiling

Game profiling focuses on performance requirements and demands from the point

of view of the sound engine and the various components that make up the project. It

demonstrates in real time the cumulative effect the sound and motion in the project

has on platform performance, and allows you to examine the impact of individual

voices.

Tracking performance using the Game Profiler with a game currently running

Workflow Optimization

280

The Game Object Explorer is the starting point for studying game objects and

listeners. Within this view, you can see all the registered game objects in your game,

as well as control which game objects and listeners will be watched by Wwise. The

game objects that you have selected for 'watching' become visible in the Game Sync

Monitor, and both game objects and listeners show up in the Game Object 3D

Viewer.

Game object profiling also analyzes the output of the sound engine, but from the

point of view of individual game objects. Game object profiling tracks game objects

so that you can observe their movements and behavior in real time. In this way, you

can find out if certain game objects are problematic.

Tracking individual game objects in the Game Object Explorer 3D viewer

Game objects refer to discrete actors or entities that exist within a game. They are

registered or created by the audio programmer for all objects or elements within the

game that can emit a sound, such as player characters, non-player characters (NPCs),

weapons, vehicles, etc. The game object profiling tools (the Game Object Explorer,

Game Object 3D Viewer, and Game Sync Monitor) work together to examine game

objects and listeners in a game or simulation.

Connecting to the Game

To begin profiling or simulating sounds or motion fx in- game on a particular

platform, you need to first connect to the PC or game console upon which the game

runs. You can connect to any Wwise sound engine that is running and available on

your local area network.

Workflow Optimization

281

Designer Note

When profiling, it is recommended that you connect to the Profile build

configuration of the Wwise sound engine, even from the Debug build of

your game, because the performance of the Debug configuration has not

been optimized.

To help you find the PC or game console you are looking for, Wwise automatically

searches for all PCs and game consoles on the same subnet of the network that are

currently running a version of the Wwise sound engine. You can also connect to

consoles or PCs outside your subnet by manually entering the IP address of the

platform.

For more information on connecting to the game:

Wwise Help > Finishing Your Project > Profiling > Connecting to a Local/Remote

PC or Game Console

Capturing Data using the Profiler

After connecting to a PC or game console, you can begin to profile the audio and

motion fx in your game by capturing data directly from the sound engine. All the

information coming from the sound engine is displayed in the Capture Log.

An entry is recorded in the Capture Log for the following types of information:

• Notifications

• Properties

• Banks

• Markers

• States

• Errors

• Events

• Switches

• Messages

• Actions

• Prepared Events

You can monitor each of these entries using the Performance Monitor and Advanced

Profiler. These views contain detailed information about memory, voice, and effect

usage, streaming, SoundBanks, plug-ins, and so on.

Wwise uses the following special indicators and color to help you quickly sort

through the many entries that can appear in the Capture Log. The following

illustration shows how the different indicators and colors are used in the Capture

Log.

Workflow Optimization

282

Capture Log showing indicator descriptions

Profiling Sound In-Game

During an epic lower level dungeon raid, the frame rate slows as a burst of sound

engulfs the player as a maelstrom of visual effects explodes onscreen. In order to

identify the role that sound may have had in the decrease in frame rate, the profiling

and game object profiling tools could be used to analyze the performance.

You can use game profiling tools to analyze the following:

• How the many sounds associated with monsters, visual effects, and physics objects

use the platform's streaming capabilities.

• How and when background noises such as positional ambient sound fall into

virtual voice.

• Which effect plug-ins are applied to the different monster vocalizations and how

these affect CPU usage.

You can use game object profiling tools to analyze the following:

• How the attenuation radius of the sounds for each monster interacts with that of

each other monster.

Workflow Optimization

283

• Where game objects such as projectile magic visual effects move relative to one

another and to the monsters.

• How an RTPC driving a side-chain affects the playback of sounds associated with

combat.

In this way, the game profiling and game object profiling tools can give you a

complete view of the game's soundscape in action.

For more information about game profiling:

Wwise Help > Finishing Your Project > Profiling

Video Tutorial - Wwise Profiler Overview

http://www.youtube.com/watch?v=qPB7j00KN40&hd=1

Workflow Optimization

284

Instance Limiting, Prioritization, and Virtual Voices

It’s not until the project has been significantly completed that the effects of instance

limiting, prioritization, and virtual voice behavior can be heard on the resulting

sounds played back during gameplay. Understanding these concerns at the outset,

and making preparations throughout development, can save the day at the end of

production when resources for implementing a fundamental change can be at a

premium.

Workflow Optimization

285

Playback Limits

To deal with limited game resources or game-design constraints, you must optimize

the sounds, music, and motion objects that are playing at any one point in the game.

This can be accomplished using two different methods:

• Limit the number of sound, music, and/or motion instances that can be played per

game object.

• Limit the overall number of sound, music, and/or music or motion instances that

can pass through a bus.

Setting a Playback Limit per Game Object

When either limit is reached, Wwise uses the priority setting of the object to

determine which one to stop and which one to play. If objects have equal priority,

there is the option to stop the newest or oldest instance that is playing.

When you set a playback limit at the Actor-Mixer or Interactive Music level, you

control the number of instances within the same structure that can be played, per

game object. If a child object overrides the playback limit set at the parent level, the

total number of instances that can play is equal to the sum of all limits defined within

the structure. This means that if, for example, you have a parent with a limit of 20

and a child with a limit of 10, the total possible number of instances is 30.

Setting a Playback Limit on an Audio Bus

When you set the playback limit at the Master-Mixer level, the number of sound,

music, and/or motion instances that can pass through the bus at any one time is

specified. Since the priority of each object has already been specified at the Actor-

Mixer or Interactive Music level, there is no playback priority setting for busses.

Workflow Optimization

286

Global Playback Limit

If the new sound, music, or motion object is not killed or sent to virtual voice at the

Actor-Mixer or Interactive Music level, it passes to the second process at the Master-

Mixer level. At this level, a global playback limit is used to restrict the total number

of voices that can pass through the bus at any one time.

Managing playback limits can be done in the advanced setting of any sound object,

actor-mixer, or audio bus in the advanced settings tab of the Property Editor.

Setting playback limits and behavior in the advanced setting tab

Workflow Optimization

287

Setting Playback Priority

Priorities define the importance given to the sound or motion object in relation to

other objects within the same actor-mixer structure. Establishing general priorities

for parent containers early on at the top level of the actor-mixer based on sound type

is a step in the right direction. Additionally, identifying critical sounds in need of

a higher priority to insure their playback is a matter of knowing the content and,

where possible, organizing it appropriately to make things easier towards the end of a

project.

Designer Note

You can also alter the playback priority based on the distance the sound

or motion object is from the listener. Wwise applies an offset to the

priority using the Max distance values defined in the Attenuation Editor.

The amount of offset applied will depend on the object's relative position

to the listener. Wwise linearly interpolates the offset between the source

point, where no offset is applied, and the attenuation max distance, where

the full offset value specified is applied.

Managing priorities can be done in the advanced setting of any sound object, actor-

mixer, or audio bus in the advanced settings tab of the Property Editor.

Setting playback priority in the advanced setting tab

Workflow Optimization

288

Understanding Virtual Voice Behavior

To maintain an optimal level of performance when many sounds are playing

simultaneously, sounds below a certain volume level should not take up valuable

processing power and memory. Instead of playing these inaudible sounds, the sound

engine can queue them in the virtual voice list. Wwise continues to manage and

monitor these sounds, but once inside the virtual voice list, they are no longer

processed by the sound engine and won't take up one of the hardware's active voices.

When you select the virtual voices feature, sounds move back and forth between

the physical and the virtual voice based on their volume levels when they are

under threshold, or if their playback limit was exceeded. As the volume reaches the

threshold set by the Wwise user in Project Settings, they are added to the virtual

voice list and sound processing stops. As volume levels increase, as is the case when

sounds move within the max distance radius, the sounds will move from the virtual

voice list to the physical voice where they will be processed by the sound engine

again.

Managing virtual voice behavior can be done in the advanced setting of any sound

object, actor-mixer, or audio bus in the advanced settings tab of the Property Editor.

Setting virtual voice behavior in the advanced setting tab

There are three options to choose from when determining the move from physical to

virtual voice:

• Continue to play - Continues playing the object as a physical voice even though it

will no longer be heard.

• Kill voice - Stops playing the object. No fade out is applied with this option.

• Send to virtual voice - Sends the object to the virtual voice list.

When a sound or motion object is sent to the virtual voice list, certain parameters of

the object are monitored by the sound engine, but no processing for audio or motion

occurs.

Workflow Optimization

289

When Send to Virtual Voice is set, there are three options that determine the

behavior of sounds or motion objects that move from the virtual voice list back to

the physical voice.

• Play from beginning - Plays the object from its beginning. This option resets the

object's loop count.

• Play from elapsed time - Continues playing the object as if it had never stopped

playing.

This option is not sample accurate, so sounds returning to the physical voice may be

out of sync with other sounds playing.

• Resume - Pauses the object when it moves from the physical voice to the virtual

voice list and then resume playback when it moves back to the physical voice.

Each behavior has its own performance characteristics, as demonstrated in the

following table:

Workflow Optimization

290

Designer Note

Streamed sounds stop consuming I/O bandwidth while they are virtual.

When the selected behavior is Play From Beginning or Play from Elapsed

Time, the I/O buffer is flushed. This causes a delay before the sound is

heard again when the voices switch from virtual to physical.

In short, taking control of instances and priorities can actually change the sound of

your game. Special care and handling should be used when defining the properties at

every level of both the Actor and Master-Mixer Hierarchies. Restrictively modifying

these setting can prevent important sounds from being heard appropriately, in the

same way that ignoring the setting can result in unwelcome behavior.

For additional information on Instance Limiting, Prioritization, and Virtual Voices:

Video Tutorial - Voice Management

Wwise Knowledge Base - Tips to reduce memory usage

Wwise Knowledge Base - Playback instance limits (including global limits)

Wwise Knowledge Base - Playback Limit and Priority: Use Case Scenarios

Wwise Knowledge Base - Working with object priority and virtual voices

Wwise Knowledge Base - How does playback limit overriding work?

Wwise Knowledge Base - Virtual voices: What’s calculated and what’s not

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Managing the

Priority of Sounds and Motion > Understanding How Wwise Prioritizes Sounds

and Motion Objects

http://www.youtube.com/watch?v=OCKsq2NTS_E&hd=1
http://kb.gowwise.com/questions/193/Tips+to+reduce+memory+usage
http://kb.gowwise.com/questions/108/Playback+instance+limits+(including+global+limits)
http://kb.gowwise.com/questions/29/Playback+Limit+and+Priority%3A+Use+Case+Scenarios
http://kb.gowwise.com/questions/242/Working+with+object+priority+and+virtual+voices.
http://kb.gowwise.com/questions/203/How+does+playback+limit+overriding+work%3F
http://kb.gowwise.com/questions/43/Virtual+voices%3A+What%E2%80%99s+calculated+and+what%E2%80%99s+not

Workflow Optimization

291

Bridging the Game Engine Integration Gap

The ability to bridge functionality between game and audio engine authoring

applications is one of the most underestimated workflow improvements available to

the development team. The interaction between tools that are linked by a shared set

of information can be used to drive iteration as part of a sound designer's daily tasks.

It is here that the SoundFrame technology aims to bring a suite of solutions to help

quickly streamline communication between Wwise and other authoring applications

in an intelligent and modular way.

Designer Note

SoundFrame gives you access to most of the Sound Engine API. This

allows you to enable event playback as well as modify states, switches,

RTPCs, triggers, and environments in the application. This API lets

you simulate real game scenarios directly in Wwise without requiring a

working game engine or even having to generate SoundBanks.

Using the SoundFrame SDK, you can build plug-ins that can be integrated directly

into your world building application, whether it be Unity, Unreal Editor (UnrealEd),

Maya®, 3ds Max®, or any internal proprietary tool. This type of plug-in, which

is built on top of the communication framework, allows you to perform many

Wwise functions directly in your world building application, such as playing events,

triggering game sync changes, and modifying positioning properties. You will also be

able to integrate events at particular points in the animation, map switches to game

textures, visualize attenuation radiuses, and assign environmental reverb to zones,

among many other things.

How Does SoundFrame Work?

Applications and plug-ins created with the SoundFrame API work in a similar way

to the Soundcaster in Wwise. Like the Soundcaster, you can re-create a variety of

game scenarios by triggering events, sounds, and game syncs. The main difference

is that the SoundFrame application or plug-in is outside of Wwise. In order for the

two applications to communicate with each other, they both need to be installed and

running on the same machine. SoundFrame establishes a bi-directional link with

Wwise using a client-server type relationship. This type of communication allows

you to validate sophisticated game scenarios quickly and efficiently.

Workflow Optimization

292

When sounds are triggered by a SoundFrame application or plug-in, they are played

through Wwise. Since SoundFrame uses Wwise as its sound engine, it is free from

any sound engine restrictions. This means that updates can be tested and validated

live, which can save you a great deal of time at all stages of the development cycle.

By taking the simulation capabilities of the Soundcaster one step further, the amount

and types of audio simulations you can perform using SoundFrame are only limited

by your own imagination.

Additional Game Engine Integration Techniques

While the SoundFrame technology provides a framework that can allow rapid

development of toolset integration with Wwise, there are those who may wish to

approach the task of game engine integration into their own hands. The Wwise XML

Schema included with the SDK is provided as a roadmap for deeper integration

which may be necessary in the development environment.

Programmer Note

The XML schema for Work Units is available in the Schemas folder

in the Wwise installation (ObjectDataSchema.N.xsd - use the one

with the highest number). This schema can be used to understand the

format of Work Unit files, and it can also be used to validate the XML

file generated. Looking at the .WWU files saved by Wwise with simple

projects will also allow you to see how information should be organized.

Workflow Optimization

293

Optimization Summary

Being aware of the many minute details of a Wwise project early on in development

can contribute to a positive workflow methodology. By making many small changes

over time you can avoid the common pitfalls that occur towards the end of a project.

Ideally when you reach milestones within the production that can benefit from

optimization, there has already been some thought on how best to manage limited

resources. Through a combination of understanding and conscious implementation,

the tools to realize great sound for any game are within reach.

Throughout this chapter we have discussed:

• Platform Inclusion / Exclusion

• Linking / Unlinking Properties

• Effects Rendering

• Understanding the Different Types of Profiling in Wwise

• Connecting to the Game

• Capturing Data using the Profiler

• Profiling the Sound In-Game

• Instance Limiting, Prioritization, and Virtual Voices

• Playback Limits

• Setting a Playback Limit Per Game Object

• Global Playback Limit

• Setting Playback Priority

• Understanding Virtual Voice Behavior

• Bridging the Game Engine Integration Gap

• How Does SoundFrame Work?

• Additional Game Engine Integration Techniques

Workflow Optimization

294

Optimization Additional Resources

Wwise Help > Finishing Your Project > Profiling

Video Tutorial - Wwise Profiler Overview

Video Tutorial - Voice Management

Wwise Knowledge Base - Tips to reduce memory usage

Wwise Knowledge Base - Playback instance limits (including global limits)

Wwise Knowledge Base - Playback Limit and Priority: Use Case Scenarios

Wwise Knowledge Base - Working with object priority and virtual voices

Wwise Knowledge Base - How does playback limit overriding work?

Wwise Knowledge Base - Virtual voices: What’s calculated and what’s not

Wwise Help > Using Sounds and Motion to Enhance Gameplay > Managing the

Priority of Sounds and Motion > Understanding How Wwise Prioritizes Sounds and

Motion Objects

http://www.youtube.com/watch?v=qPB7j00KN40&hd=1
http://www.youtube.com/watch?v=OCKsq2NTS_E&hd=1
http://kb.gowwise.com/questions/193/Tips+to+reduce+memory+usage
http://kb.gowwise.com/questions/108/Playback+instance+limits+(including+global+limits)
http://kb.gowwise.com/questions/29/Playback+Limit+and+Priority%3A+Use+Case+Scenarios
http://kb.gowwise.com/questions/242/Working+with+object+priority+and+virtual+voices.
http://kb.gowwise.com/questions/203/How+does+playback+limit+overriding+work%3F
http://kb.gowwise.com/questions/43/Virtual+voices%3A+What%E2%80%99s+calculated+and+what%E2%80%99s+not

295

Chapter 13. Closing

The Real Adventure Begins ... 296

Closing

296

The Real Adventure Begins

The development path is long, winding, and littered with fallen prototypes, past

iterations, and a plethora of dead ends. As you head into battle, the best you can

hope for is a trusty weapon by your side to help defend yourself against challenges

as you progress through the forest of iteration. In game audio, you rely on the

combined power of sound design, and the magic of implementation to carry you

across the battlefield and to an eventual victory over the forces of evil; or bad sound.

Wwise is a formidable ally to have on your side during the challenging task of

development. On one hand a gleaming sword of efficiency and simplicity, on the

other, a sorcerer’s stone of possibility. Let the adventure begin!

297

Thank You

Thank You

298

Special Thanks

Audiokinetic

The production of this document could not have been possible without vast expertise of

the Audiokinetic team, especially Simon Ashby and Etienne Caron who were instrumental

in validating the terminology and consistency of intent throughout the development of the

documentation. Additionally, the final document presentation relied heavily on the capable

technical wizardry of Bernard Rodrigue.

Editor

Judy Lapalme moved swiftly and effortlessly to correct errant punctuation and help streamline

clunky sentence structure.

Project Content

All content was created exclusively for use in the accompanying Wwise Project Adventure by Bay

Area Sound: Julian Kwasneski (Sound Design) & Jared Emerson-Johnson (Composer).

Continuity Experts (Beta Testers)

Hrishikesh Dani, Luca Fusi, Jack Menhorn, Roel Sanchez, Michael Taylor, and Rob Bridgett.

299

About the Author

About the Author

300

Damian Kastbauer

Damian Kastbauer is a freelance Technical Sound Designer working to help bridge the gap

between noise makers and game developers. Utilizing the functionality of game audio specific

implementation authoring applications, his goal is to create dynamic sound interactions that

leverage interactive techniques to make good sound content sound great.

He lives in Minneapolis, Minnesota with his sharp-witted and beautiful wife, two glorious

daughters, a big hairy dog, and a freaky cat. When not dreaming and talking about ways to bring

the beauty of interactive audio to the people, he can be found: spending time with his family,

building things with his hands, and making weird noises for fun with effect-pedals.

He can be reached at: damian@lostchocolatelab.com.

Q: Is it: "Lost Chocolate LAB" or "Lost CHOCOLATE Lab"?

A: It depends on how you look at it. I've never lost a Labrador and I don't remember ever having

a Laboratory...

Q: You live in Minneapolis, how does that work?

A: A combination of remote source-control enabled work from the home studio with occasional

time on-site working directly with developers.

Q: What is the future of game audio?

A: Everyone working together to increase the use of interactive audio to create unique and

engaging experiences.

	The Wwise Project Adventure
	Table of Contents
	The Adventure Begins
	Chapter 1. Setting the Ambient Stage
	Overview
	Building the Foundation
	Importing Audio Files
	Setting Up a Looping Sound
	Adding Detail to a Developing Soundscape
	Randomizing Properties
	Using the Blend Container to Combine Sounds
	Weighted Randomization Using the Silence Plug-in
	Randomized Positioning of Sounds
	Creating the Combined Daytime Forest Ambient Combination

	Section Summary

	Introduction of a Day and Night Cycle
	Establishing a Game Parameter
	Creating the Ambient System
	Using the Blend Track Editor
	Setting Container Order within Blend Tracks
	Preparing the Event
	Harnessing Event Actions
	Creating Work Units
	Section Summary

	Sound Emitters in the Game World
	Creating Attenuation ShareSets
	Creating and Establishing Generalized Attenuations
	Subscribing Sound Objects to an Attenuation
	Using Spread as Part of an Attenuation
	Using Low Pass Filter as Part of an Attenuation
	Adjusting Cone Attenuation Properties
	Section Summary

	SoundSeed Air -Wind
	SoundSeed Wind - Deflectors
	SoundSeed Wind - Properties
	SoundSeed Wind - RTPC

	Ambient Summary
	Ambient Additional Resources

	Chapter 2. Establishing Character
	Overview
	Footsteps and Movement - Establishing Needs
	Simple Steps

	Switching System Introduction
	Defining Step Type
	Defining Surface Type
	Defining Character Type
	All Together Now

	Movement
	Defining Armor Type
	Creating the Movement Event

	Character Summary
	Character Additional Resources

	Chapter 3. Preparing for Combat
	Overview
	Defining Sound Sets for Weapon Types
	SoundSeed Air - Whoosh
	Understanding Impact
	Defining Weapon Type
	Weapon Impact System

	Attenuations for Player vs. NPC
	High Alert
	Listener Considerations

	Combat Summary
	Combat Additional Resources

	Chapter 4. Making Magic
	Overview
	Summing and Layering with Blend Containers
	Creating Distance-Based Blend Tracks
	Setting up a Game Parameter
	Crossfading Between Containers on a Blend Track
	Section Summary

	Real-Time Parameter Control (RTPC)
	Using Real-Time Effects
	Unleashing Dynamic Synthesis
	Wwise Synth One
	Modulators
	Modulator LFO
	Modulation Envelope

	Magic Summary
	Magic Additional Resources

	Chapter 5. Dialogue Decisions and Language Lessons
	Overview
	Getting Started with Dialogue and Non-Verbal Vocalizations
	Adding Additional Languages
	Dynamic Dialogue
	Cinematic Dialogue Placement
	Voice Summary
	Voice Additional Resources

	Chapter 6. Unlocking the User Interface
	Overview
	Creating a Simple Menu Select Sound
	Defining 2D Sound Positioning
	The Complex Negotiation of Pause
	Pause - Defining the Scenario
	Pausing the Game
	Resuming the Game

	User Interface Summary
	User Interface Additional Resources

	Chapter 7. Adventures in Music
	Overview
	Starting With the Interactive Music Hierarchy
	Preparing the Content

	The Horizontal Approach
	Creating the Ambient Music Segment
	Grooming the Tracks
	Dynamic Danger
	Adding RTPC to Tracks
	Auditioning RTPC
	Looping a Music Segment
	Section Summary

	The Vertical Approach
	Groups and Behaviors
	Sequencing Groups in the Music Playlist Editor
	Section Summary

	Using States to Switch Between Music Types
	Defining Interactive Music Transitions
	Authoring Transitions
	Defining Transition Behavior
	Transitioning from Ambient to Action Music
	Transitioning from Action to Ambient Music
	Section Summary

	Music Summary
	Music Additional Resources

	Chapter 8. Adventures in MIDI
	Overview
	Importing MIDI Files
	Section Summary

	Setting up Wwise Synth One
	Adventures in Synthesis
	Section Summary

	Connecting MIDI & Sound
	Importing the Individual MIDI Tracks
	Music Segment MIDI Properties
	Sound Object MIDI Properties
	Section Summary

	MIDI Summary
	Music Additional Resources

	Chapter 9. Mastering the Mix
	Overview
	Routing with Audio Busses
	Routing with Auxiliary Busses
	Using Auxiliary Sends
	User-Defined Auxiliary Sends
	Game-Defined Auxiliary Sends

	States and Mix Snapshots
	Auto-Ducking vs. Side-Chaining
	Auto-Ducking
	Side-Chaining
	Mixing with RTPC

	Using Effects in the Master-Mixer
	Visualizing the Mixing Desk
	Mixing Techniques for Attenuations
	Mix Summary
	Mixing Additional Resources:

	Chapter 10. HDR Audio Wwizardry
	Overview
	Implementing HDR Audio in Wwise
	Setting up a HDR Audio Mix
	Setting up the HDR Audio Dynamic Range Window

	Enabling HDR Audio in the Master-Mixer Hierarchy
	Setting up HDR Audio Dynamics Properties

	The Use of HDR Audio in the Actor-Mixer Hierarchy
	Enabling Envelope Tracking
	Editing a Waveform Envelope
	Enabling Source Normalization
	Using Make-up Gain

	Using the Voice Monitor to Understand HDR Audio
	Opening the Voice Monitor View
	Auditioning Sounds in the Soundcaster
	Capturing Data from Wwise

	HDR Audio Summary

	Chapter 11. Getting Set Up for Adventure
	Overview
	Work Unit Management
	Establishing a Naming Convention Early
	Logical Grouping of Work Units
	Creating Work Units with Sharing in Mind

	Grouping Objects in the Actor-Mixer Hierarchy
	Setting the Audio Channel Configuration
	Speakers vs Headphones Panning Rules

	Creating Simulations with the Soundcaster
	Project Settings
	Project Settings - General Tab
	Workgroup Plug-in Configuration
	Audio File Locations
	Default Conversion Settings
	Defining the Sample Rate Automatic Detection Settings

	Obstruction/ Occlusion
	Setting Obstruction and Occlusion

	Motion
	Generating a Motion Source from an Existing Audio Signal
	Generating Motion Using a Motion FX Object

	Customizing Layouts
	Layout Docking
	View Docking

	External Sources
	SoundBanks and SoundBank Generation
	Creating a SoundBank
	Populating and Managing the Contents of SoundBanks
	Excluding Elements from a SoundBank
	A New Approach for SoundBank Management
	Conversion Settings
	The SoundBank Definition File

	Using the Integrity Report
	Using the File Packager
	Downloadable Content (DLC)
	Setup Summary
	Setup Additional Resources

	Chapter 12. Workflow Optimization
	Overview
	Platform Inclusion / Exclusion
	Linking / Unlinking Properties
	Effects Rendering
	Understanding the Different Types of Profiling in Wwise
	Connecting to the Game
	Capturing Data using the Profiler
	Profiling Sound In-Game

	Instance Limiting, Prioritization, and Virtual Voices
	Playback Limits
	Setting a Playback Limit per Game Object
	Setting a Playback Limit on an Audio Bus
	Global Playback Limit

	Setting Playback Priority
	Understanding Virtual Voice Behavior
	Bridging the Game Engine Integration Gap
	How Does SoundFrame Work?
	Additional Game Engine Integration Techniques

	Optimization Summary
	Optimization Additional Resources

	Chapter 13. Closing
	The Real Adventure Begins

	Special Thanks
	Damian Kastbauer

