
Wwise 2012.1

Fundamentals

Wwise 2012.1

Wwise 2012.1: Fundamentals
Wwise 2012.1 Build 4189

Copyright © 2012 Audiokinetic, Inc. All rights reserved.

Patents pending

Wwise is a product of Audiokinetic, Inc..

This document is supplied as a guide for the Wwise® product. This guide and the software that it describes is furnished under license and may not

be duplicated, reproduced, modified, stored or transmitted, in whole or in part, in any form or by any means, other than as expressly permitted

by the terms of such license or with the prior written permission of Audiokinetic, Inc.. The content of this guide is furnished for information

purposes only, and its content and all features and specifications referred to therein are subject to change without notice. Reasonable care has

been taken in preparing the information contained in this document, however, Audiokinetic, Inc.. disclaims all representations, warranties and

conditions, whether express, implied or arising out of usage of trade or course of dealing, concerning this guide and assumes no responsibility or

liability for any losses or damages of any kind arising out of the use of this guide or of any error or inaccuracy it may contain, even if Audiokinetic,

Inc.. has been advised of the possibility of such loss or damage. This guide is protected by Canadian copyright law and in other jurisdictions by

virtue of international copyright treaties.

Wwise® is a registered trade-mark of Audiokinetic, Inc.. Actor-mixer, Master-Mixer, SoundFrame, Soundcaster, Randomizer are all trademarks of

Audiokinetic, Inc.. All other trademarks, trade names or company names referenced herein are the property of their respective owners.

iii

Table of Contents

1. Introducing Wwise .. 1

Introducing Wwise .. 2

The Wwise Production Pipeline .. 2

The Wwise Project .. 3

How Wwise Manages the Assets in Your Project 4

Originals .. 4

Platform Versions .. 4

2. Integrating Audio in your Game ... 6

The Wwise Fundamental Approach .. 7

3. The Project Hierarchy ... 9

The Project Hierarchy ... 10

Understanding the Actor-Mixer Hierarchy 11

Audio Objects .. 12

Source Plug-ins .. 13

Building a Hierarchy of Audio Objects ... 13

Audio Objects - Roles and Responsibilities 14

Understanding the Interactive Music Hierarchy 15

Understanding the Master-Mixer Hierarchy 16

4. Understanding Events .. 18

Understanding Events .. 19

Action Events ... 20

Dialogue Events ... 21

Defining Event Scope .. 24

Integrating Events into your Game ... 25

Benefits of Using Wwise Events .. 25

Events - Roles and Responsibilities ... 26

5. What are Game Objects? ... 27

What are Game Objects? ... 28

Registering Game Objects ... 28

Scope - Game Object vs Global ... 29

Benefits of Using Game Objects .. 29

Game Objects - Roles and Responsibilities 29

6. What are Game Syncs? .. 31

What are Game Syncs? .. 32

Understanding States ... 32

Understanding Switches .. 34

Understanding RTPCs ... 35

Understanding Triggers ... 37

Understanding Arguments .. 38

Game Syncs- Roles and Responsibilities .. 38

7. Creating Simulations ... 40

Creating Simulations ... 41

Wwise 2012.1

iv

8. Profiling and Troubleshooting ... 42

Profiling and Troubleshooting ... 43

9. Understanding SoundBanks .. 44

Understanding SoundBanks .. 45

File Packager .. 45

10. The Wwise Sound Engine ... 47

The Wwise Sound Engine ... 48

11. Listeners ... 50

Listeners ... 51

Multiple Listeners .. 51

Listeners - Roles and Responsibilities .. 51

12. Division of Tasks Between Designer and Programmer 53

Division of Tasks Between Designer and Programmer 54

Sound Designer Responsibilities ... 54

Audio Programmer Responsibilities .. 54

Project Planning .. 55

13. Conclusion ... 56

Conclusion ... 57

v

List of Tables

3.1. Audio Objects - Roles and Responsibilities 14

4.1. Defining Event Scope ... 24

4.2. Events - Roles and Responsibilities ... 26

5.1. Game Objects - Roles and Responsibilities 30

6.1. Game Syncs- Roles and Responsibilities ... 39

11.1. Listeners - Roles and Responsibilities ... 52

vi

List of Examples

4.1. Using Action Events - Example .. 21

4.2. Using Dialogue Events - Example ... 23

6.1. Using States - Example ... 33

6.2. Using Switches - Example .. 35

6.3. Using RTPCs - Example ... 36

6.4. Using Triggers - Example ... 37

6.5. Using Arguments - Example .. 38

1

Chapter 1. Introducing Wwise

Introducing Wwise .. 2

The Wwise Production Pipeline .. 2

The Wwise Project .. 3

How Wwise Manages the Assets in Your Project 4

Originals .. 4

Platform Versions .. 4

Introducing Wwise

2

Introducing Wwise

Based on a profound understanding of the needs of both sound designers

and audio programmers, Audiokinetic has created Wwise, an innovative

solution dedicated to the art of audio design. Several years in the making,

Wwise has been developed with the following premises in mind:

• Providing a complete authoring solution.

• Redefining the production workflow for audio and motion.

• Improving pipeline efficiency.

• Pushing the boundaries of gameplay immersion using audio and

motion.

This powerful and comprehensive audio pipeline solution consists of the

following:

• A powerful authoring application—a non-linear authoring tool for

creating audio and motion asset structures, defining propagation,

managing sound, music, and motion integration, profiling playback,

and creating SoundBanks.

• An innovative sound engine— a sophisticated sound engine that

manages audio and motion processing, performs a comprehensive set of

diverse functions, and is highly optimized for each platform.

• A game simulator—a LUA script interpreter that reproduces exactly

how sounds and motion will behave in the game, allowing you to

validate specific behaviors and profile the performance of Wwise on

each platform before the integration of Wwise into your game's sound

engine.

• A plug-in architecture—a completely scalable plug-in architecture for

quickly expanding the audio immersion in the game. Several plug-ins

are available, including:

• Source plug-ins for generating audio and motion, such as a tone

generator.

• Effect plug-ins for creating audio effects, such as a reverb.

• An interface between Wwise and world builders (SoundFrame®)

—a unique plug-in interface with external game world builders

or 3D applications that enables external applications to seamlessly

communicate with Wwise. From SoundFrame, you can easily modify

everything that can normally be modified using the Sound Engine API.

The Wwise Production Pipeline

At the foundation of Wwise is the production pipeline—a new and

innovative way to work that tightly integrates the necessary tools allowing

you to perform a variety of tasks in real time within the game itself.

Introducing Wwise

3

• Author—build sound, motion, and music structures and define

properties and behaviors.

• Simulate—validate artistic direction and simulate game play.

• Integrate—integrate early without additional programming.

• Mix—mix properties in game in real time.

• Profile—profile in real time to ensure game constraint compliance.

The Wwise Project

Wwise is a project-based system, which means that all the audio and

motion information related to a particular game for each and every

platform will be in one project.

Within this project, you can do any and all of the following:

• Manage the sound, voice, music, and motion assets in your game.

• Define object properties and playback behaviors.

• Create Events, both action and dialogue Events, that trigger audio and

motion in game.

• Create prototypes and simulations.

• Troubleshoot and profile all aspects of the audio and motion in your

project.

Introducing Wwise

4

Projects also contain the SoundBanks that are generated for each platform

and language version that you are creating for your game.

How Wwise Manages the Assets in Your Project

A typical game can have thousands of sound, music, and motion assets,

so your Wwise project must be able to manage these assets efficiently and

effectively, especially when you are creating different versions of the same

game for each platform and language.

Originals

The first thing to understand is that Wwise is non-destructive, which

means that you can edit the assets in your project without affecting the

original files themselves. When you import a file into Wwise, a copy of the

file is stored in the project’s “Originals” folder.

Depending on the type of file you are importing, the file will be stored in

one of the following folders:

• Plugins

• SFX

• Voice

If files are flagged as Voice or Plugin files, they are then further subdivided

by language or plugin type. The following illustration demonstrates how

Wwise organizes the original assets imported into your project.

Platform Versions

From these Wwise “Originals”, you can create the versions for each game

platform. These platform versions are stored in the project’s “cache” folder.

To help Wwise manage the contents of the cache folder more effectively,

the converted assets are divided by:

• Platform (Windows, Xbox 360™, PlayStation®3, Wii™, and so on)

• Type (Plugins, SFX, or Voice). If assets are flagged as Voice or plugin

files, they are further subdivided by:

Introducing Wwise

5

• Language (English, French, Spanish, and so on)

• Plugin Type (Controller)

6

Chapter 2. Integrating Audio in your Game

The Wwise Fundamental Approach .. 7

Integrating Audio in your Game

7

The Wwise Fundamental Approach

Before jumping into the code and using the Wwise SDK, you should

understand the unique approach Wwise uses for building and integrating

audio into your game. There are also a few concepts that you should be

familiar with in order to work efficiently and get the most out of Wwise.

The Wwise approach to building and integrating audio in a game includes

five main components:

• Audio Objects

• Events

• Game Syncs

• Game Objects

• Listeners

Each of the components will be discussed in further detail in the following

sections, but before moving on, you should understand where each of

these components fits in and how they relate to one another.

One of the goals of Wwise was to create a clear distinction between the

tasks of the programmer and those of the designer. For example, the

audio objects, which represent the individual sounds in your game are

created and managed exclusively within the Wwise application by the

sound designer. Game objects and listeners, on the other hand, which

represent specific game elements that emit or receive audio, are created and

managed within the game by the programmer. The final two components,

Events and game syncs, are used to drive the audio in your game. These

two components create the bridge between the audio assets and the game

components and are therefore integral to both Wwise and the game.

The following illustration demonstrates where each of these components

are created and managed.

Integrating Audio in your Game

8

9

Chapter 3. The Project Hierarchy

The Project Hierarchy ... 10

Understanding the Actor-Mixer Hierarchy .. 11

Audio Objects .. 12

Source Plug-ins .. 13

Building a Hierarchy of Audio Objects ... 13

Audio Objects - Roles and Responsibilities ... 14

Understanding the Interactive Music Hierarchy 15

Understanding the Master-Mixer Hierarchy ... 16

The Project Hierarchy

10

The Project Hierarchy

The assets that you import into your project are the foundation for your

project hierarchy. The project hierarchy evolved from traditional mixing

techniques where different instruments were routed to a bus, so that you

could control their sound properties as a single mixed sound. For example,

each of the hi hat, ride, crash, bass drum, and snare sounds could be

routed to a single bus so that you could control their volume and other

parameters as if they were one entity.

In Wwise, a similar approach is used to organize and group the sounds,

motion objects, and music in your project. By grouping sound, motion,

and music objects in such a manner, you begin to build a hierarchical

project structure that creates parent-child relationships between the

various objects. This unique and efficient way to create and manage the

audio and motion in your game gives you more control and flexibility to

build a realistic and immersive environment for your game.

The Wwise project hierarchy consists of three distinct levels:

• Actor-Mixer Hierarchy—groups and organizes all the sound and

motion assets in your project using a series of Wwise-specific objects.

• Interactive Music Hierarchy—groups and organizes all the music assets

in your project using a series of Wwise-specific objects.

• Master-Mixer Hierarchy—defines the routing and output of the

different sound, motion, and music structures using one or more output

busses.

Wwise Project Hierarchies are Workgroup Ready

Working as part of a team is crucial in today's game

development environment. Although only one Wwise project

can be used per game, you can divide up a Wwise project

hierarchies into different work units so that different people can

The Project Hierarchy

11

work on the project concurrently. Work units are distinct XML

files that contain information related to a particular section or

element within your project. These work units can help you

organize and manage the different elements within a project.

If you are working as part of a team, these work units can also

be managed by your source control system to make it easier

for the different members of your team to work on the project

concurrently.

Understanding the Actor-Mixer Hierarchy

The Actor-Mixer Hierarchy groups and organizes all the sound and motion

assets in your project. At the base of this hierarchy are all your individual

sound and motion objects. You can define the properties and behaviors

of these individual objects, but you can also take these objects and group

them together so that you can define their properties and behaviors as

a unit. To accommodate the complex nature of audio within a game,

different types of objects can exist within the Wwise project hierarchy.

Each object type has a set of properties, such as volume, pitch, and

positioning, and a set of unique behaviors, such as random or sequence

playback. By using different object types to group sounds within your

project hierarchy, you can define specific playback behaviors of a group

of sounds within the game. You can also define these properties and

behaviors at different levels within the hierarchy to obtain different results.

Since motion is generally tied to audio in a game, Wwise uses the same

principles and workflow for generating motion. This means that you can

organize the motion assets for your game into hierarchies, and assign

properties and behaviors in the same way as your audio assets.

You can use a combination of the following object types to group your

assets and build a structure for your project:

• Sound objects

• Motion FX objects

• Containers

• Actor-Mixers

The Project Hierarchy

12

Audio Objects

The various voice and sfx assets in your game are represented in Wwise

by special audio objects called sound objects. These sound objects contain

sources that are linked to the original audio file.

The audio source is a separate layer between the imported audio file and

the sound object. By adding an abstraction layer, you can have multiple

sources and audio files all contained within the same sound object.

This not only makes it easy to test different conversion settings but also

allows you to efficiently manage multi-language development.

The Project Hierarchy

13

Note: Wwise uses a similar method to manage the music and motion assets

in your project.

Source Plug-ins

Sound objects not only support audio sources, but they also support plug-

in sources.

Wwise ships with a variety of source plug-ins, including a tone generator,

silence, and audio input plug-in. In addition to being immediately

useful in your production pipeline, the main purpose of these is to

be used in conjunction with provided source code as a reference for

programmers who are interested in building their own. With the creation

and management of audio objects being done in Wwise by the sound

designer, programmers are now free to develop a variety of source plug-ins,

pushing the envelope in audio design and enhancing the overall experience

of the game.

Building a Hierarchy of Audio Objects

These sound objects can be grouped together to create a hierarchical

project structure. Audio properties and behaviors can be applied at

different levels in the hierarchy to give you the control and flexibility you

need to build a realistic and immersive game experience.

The Project Hierarchy

14

Containers are used to group the sound objects within your project. They

are mainly used to play a group of objects according to a certain behavior,

such as random, sequence, switch, and so on. For example, you can group

all the gun shot firing sounds into a random container so that a different

sound will be played each time the gun is fired in game.

All these audio objects are routed through a hierarchy of busses where

additional properties and effects can be applied at a global level.

Audio Objects - Roles and Responsibilities

The following table shows you which tasks related to audio objects are the

responsibility of the sound designer and which ones are the responsibility

of the programmer:

Table 3.1. Audio Objects - Roles and Responsibilities

Tasks Sound Designer

(Wwise)

Programmer (Game

Code/Tools)

Create sound objects

for game audio assets

X

Group objects and

build project hierarchy

X

Define sound

properties and

behaviors

X

Route audio objects

through busses

X

Develop source plug-

ins

 X

The Project Hierarchy

15

Understanding the Interactive Music Hierarchy

Wwise offers you great flexibility when it comes to creating the interactive

music for your project. There is an almost infinite number of ways to

assemble interactive music objects into a game score. However, following

some kind of consistent structure can make your workflow more efficient.

Two of the basic structures that can be applied to interactive music projects

are as follows:

• A horizontal project structure is one in which you re-sequence the game

score by shuffling the tracks contained in music segments. This is similar

to the track mixing used in music production. It can help you make a

varied score out of long, multi-tracked segments.

• A vertical project structure is one in which you vary the game score by

changing which segments are played at any given time. To do this, you

can arrange short discrete segments in the Interactive Music hierarchy,

much like you would arrange objects in the Actor-Mixer hierarchy. In

this way, you can make a compelling score from a selection of short

music segments while minimizing console requirements.

Typically, you'll use a combination of both these structures to make

efficient use of the resources you have available for your project. A good

structure lets you show off your music, and make the most of your console

resources.

The Project Hierarchy

16

Understanding the Master-Mixer Hierarchy

On top of the Actor-Mixer and Interactive Music hierarchies sits the

Master-Mixer hierarchy. The Master-Mixer hierarchy is a separate

hierarchical structure of busses that allows you to re-group and mix the

many different sound, music, and motion structures within your project

and prepare them for output. The Master-Mixer hierarchy is divided into

two sections: one for sound and music, and one for motion. Each section

consists of a top-level “Master Bus” and any number of child busses below

it.

You can choose to route sound, music, and motion structures through

these busses using the main categories within your game. For example, you

may want to group all the different audio structures into the following four

categories:

• Voice

• Ambience

• Sound Effects

• Music

These busses not only create the final level of control for the sound, music,

and motion structures within your project but they can also determine

which sounds are affected by environmental effects such as Reverb.

Because they sit on top of your project hierarchy, you can use them to

create the final mix for your game. Depending on the platform, certain

effects, including environmental effects, may also be applied to the busses

to create that immersive experience that your game requires.

You can also use the audio bus structure to troubleshoot problems within

your game. For example, you may want to solo specific voice, ambient

sounds, or sound effects busses, to identify specific sounds or music.

The Project Hierarchy

17

The following illustration shows an example of a Master Audio Bus

hierarchy that uses two preliminary busses to separate the environmental

versus the non-environmental sounds and then uses several other audio

busses to regroup some of the sound structures in the Actor-Mixer

hierarchy and some of the music structures in the Interactive Music

hierarchy.

Note

A similar hierarchy can be created at the same level under

the Master Motion Bus for all the motion structures in your

project.

18

Chapter 4. Understanding Events

Understanding Events .. 19

Action Events ... 20

Dialogue Events ... 21

Defining Event Scope .. 24

Integrating Events into your Game ... 25

Benefits of Using Wwise Events .. 25

Events - Roles and Responsibilities ... 26

Understanding Events

19

Understanding Events

Wwise uses Events to drive the audio in your game. These Events apply

actions to the different sound objects or object groups in your project

hierarchy. The actions you select specify whether the Wwise objects will

play, stop, pause, and so on. For example, let's say you are creating a

first-person shooter game and you want to create an Event for when the

player dies. This Event will play a special “Die” sound and will stop the

“EnergyShield” sound that is currently playing.

The following illustration demonstrates how this Event would look in

Wwise:

The sound designer can pick from a long list of action types to drive

the audio in game, including Mute, Set Volume, Enable Effect Bypass,

and so on. For example, let's say you created a second Event for when

the player leaves the game to enter the menu. This Event will play the

“Enter_Menu” sound, decrease the volume of the music bus by -10dB, and

pause everything else.

The following illustration demonstrates how this Event would look in

Wwise.

To accommodate as many situations as possible, there are two different

types of Events:

• “Action” Events—these Events use one or more actions, such as play,

stop, pause and so on, to drive the sound, music, and motion in game.

Understanding Events

20

• Dialogue Events—these Events use a type of decision tree with

arguments to dynamically determine what object is played.

After Events are created in Wwise, they can be integrated into the game

engine so that they are called at the appropriate times in the game.

Events can be created and integrated into the game engine early in the

development process. You can continue to fine-tune the Event without

having to re-integrate it into the game engine.

Action Events

To drive the sound, music, and motion in your game, Wwise uses “action”

Events. These Events apply actions to the different structures within your

project hierarchy. Each of these Events can contain one action or a series of

actions. The actions you select will specify whether the Wwise objects will

play, pause, stop, and so on.

Understanding Events

21

Example 4.1. Using Action Events - Example

Let's say the character in your game must enter a cave to retrieve some

hidden documents. When the character enters the cave from the woods,

the ambient sounds in the game should change. To trigger this change, you

must create an Event that will contain a series of actions that will stop the

ambient “Woods” sounds and play the ambient “Cave” sounds. This Event

will be integrated into the game engine and at the moment the character

enters the cave, the game engine calls the specific Event that you created in

Wwise.

The following illustration demonstrates how the game engine triggers an

Event to change the ambient sounds playing in a game:

To deal with the transitions that occur between sound, music, or motion

objects, each Event action also has a set of parameters that you can use to

delay, or fade in and fade out incoming and outgoing objects.

Dialogue Events

To drive the dynamic dialogue in your game, Wwise uses the dialogue

Event, which is basically a set of rules or conditions that determines which

piece of dialogue to play. The dialogue Event allows you to re-create a

variety of different scenarios, conditions or outcomes that exist in your

game. To ensure that you cover every situation, Wwise also allows you to

create default or fallback conditions.

Understanding Events

22

All these conditions are defined using a series of arguments and argument

values. These arguments and argument values are combined to create

argument paths, which define the particular conditions or outcomes in the

game. Each path is then associated with a specific sound object in Wwise.

As the game is played and dialogue Events are called, the game verifies

the existing conditions against those defined in the dialogue Event. The

condition or argument path that matches the current situation in game

determines which piece of dialogue is played.

Note

Although dialogue Events were initially created to handle game

dialogue, they are not reserved explicitly for dialogue and can

be used for a variety of other purposes in your game.

Understanding Events

23

Example 4.2. Using Dialogue Events - Example

Let's say that you are creating a hockey game with a play-by-play

commentary. When a player shoots and scores, you want the play-by-play

commentary to correspond to the action in game. To set up the different

possibilities and outcomes in Wwise, you will need to create dialogue

Events for Players, Actions, Transitions, and so on. Each of these Events

will contain a set of corresponding arguments and argument values that

you have created for your game. You must create an argument path that

defines each condition or outcome and then assign an appropriate voice

object to each argument path. During gameplay, the game will match the

current argument values against the argument paths you defined in Wwise

to determine which voice object to play.

The following illustration demonstrates how dialogue Events created in

Wwise can generate a play-by-play commentary that says “Cross shoots

and scores!”:

Understanding Events

24

Defining Event Scope

Every action within an Event has a corresponding scope setting. The scope

determines whether the Event action is applied globally to all game objects

or to the specific game object that triggered the Event. For some actions,

the sound designer can choose the scope, and for other actions, the scope

is per-determined.

If we look again at EventB, for example, the scope of each Event action

would be as follows:

Table 4.1. Defining Event Scope

Event Action Scope Comments

Play > Menu_Enter Game Object The scope is set to

Game Object because

play Events are always

triggered by a single

game object.

Set Volume > Music Global The scope is set to

Global because the

Set Volume action is

applied to a bus, which,

by its very nature, is

global.

Pause All Except >

Music

Global The scope is

automatically set to

Global because the

Pause All Except action

is applied to the music

bus, which, by its very

nature, is global.

The following illustration demonstrates how this Event would look in

Wwise.

Understanding Events

25

Note

Scope is an important concept that applies to many elements in

Wwise. Understanding the scope of each element will help you

decide when to use each element in different situations.

Integrating Events into your Game

After creating the events for your game, the sound designer can package

them into SoundBanks. These SoundBanks are then loaded into your

game, where the events can be triggered by your game's code. For example,

when the player is killed, you would play the special “Die” sound and stop

the “EnergyShield” sound by triggering the corresponding event.

To integrate these events into your game, the programmer must specify

onto which game object the event actions will be performed. This is done

by posting each event. An event should be posted by your game's code

whenever you want the audio to change. You can post events using strings

or ids.

Benefits of Using Wwise Events

One main advantage to this method for triggering sound in your game is

that it gives the sound designer additional control and flexibility without

requiring any additional programming. All events are created in Wwise

by the sound designer and they are then integrated into the game by the

programmer. Once events are integrated in the game, the sound designer

can continue working on them, changing or modifying the actions

they contain, or the objects to which they refer. Since your game is still

triggering the same event, the changes made by the sound designer will

take effect in the game without requiring extra work from the developer,

and without recompiling the code.

Understanding Events

26

Events - Roles and Responsibilities

The following table shows you which tasks related to events are the

responsibility of the sound designer and which ones are the responsibility

of the programmer:

Table 4.2. Events - Roles and Responsibilities

Tasks Sound Designer

(Wwise)

Programmer (Game

Code/Tools)

Creating events X

Assigning event actions

to audio objects

X

Defining the scope of

event actions

X

Posting events in game X

27

Chapter 5. What are Game Objects?

What are Game Objects? ... 28

Registering Game Objects ... 28

Scope - Game Object vs Global .. 29

Benefits of Using Game Objects .. 29

Game Objects - Roles and Responsibilities ... 29

What are Game Objects?

28

What are Game Objects?

Game objects are the central concept in Wwise because every Event

triggered in the sound engine is associated with a game object. A game

object generally represents a particular object or element in your game

that can emit a sound, including characters, weapons, ambient objects,

such as torches, and so on. In some cases, however, you may want to assign

game objects to different parts of an in-game element. For example, you

can assign a different game object to different parts of a giant character so

that the footstep sounds and the character's voice emanate from different

locations within the 3D sound space.

Note

If you are familiar with the Unreal game engine, game objects

in Wwise are similar to Actors in Unreal.

For every game object, Wwise stores a variety of information that it will

use to determine how each sound will be played back in game. Any of the

following types of information may be associated with the game object:

• Property offset values of an audio object associated with the game

object, including volume and pitch.

• 3D position and orientation.

• Game syncs information, including states, switches, and RTPCs.

• Environmental effects.

• Obstruction and Occlusion.

Note

Unlike other properties, attenuation is applied on the audio

object and not on the game object. This gives the sound

designer more flexibility to control the attenuation for each

sound individually. The 3D Game Object view in Wwise allows

the sound designer to view the game objects to which sounds

are associated, the position of the game objects in relation to

the listener, along with the attenuation radius for each sound.

Registering Game Objects

Before you can use game objects, the programmer needs to register them

in the game code. When you no longer need the game objects, you should

un-register them, because the sound engine will continue to store their

related information (3DPosition, RTPC, switches, and so on) until the

game object associated with these values is unregistered.

What are Game Objects?

29

Scope - Game Object vs Global

By using game objects, Wwise introduces the concept of scope, which was

discussed briefly in the Events section. The scope determines the level at

which properties and Events are applied to the sounds in your game. You

now have the choice to apply these elements at the game object level or

globally. The specific situation and/or action that is taking place in game,

will determine the scope and ultimately the approach you take in Wwise.

For example, let's say you are creating a first-person shooter game. The

main character in your game must navigate the city streets to capture the

enemy's flags. As the character walks through the city, you will hear his

footsteps. If want to change the properties or sounds associated with these

footsteps, you will only want to apply these changes locally at the level

of the game objects specifically related to the main character's feet. On

the other hand, if your character submerges himself underwater, all the

sounds that continue to play within the surrounding environment, such as

explosions and vehicles, will need to be modified. In cases like these, you

will want the changes to be made on a global scale.

Benefits of Using Game Objects

By using game objects, the management of audio has been simplified

because programmers only have to keep track of game objects and not the

individual sounds.

Once the game objects are created, programmers only need to post Events,

set up the game syncs, including switches, states, and RTPCs, and in-game

environments. The specific details of which sound is played and how it will

play are defined by the sound designer in Wwise. By using this approach,

you can save a huge amount of time when dealing with the multitude of

sounds associated with the various entities within your game.

Game Objects - Roles and Responsibilities

The following table shows you which tasks related to game objects are the

responsibility of the sound designer and which ones are the responsibility

of the programmer:

What are Game Objects?

30

Table 5.1. Game Objects - Roles and Responsibilities

Tasks Sound Designer

(Wwise)

Programmer (Game

Code/Tools)

Associate game objects

to 3D objects in the

game

X X

Register/Unregister

game objects

 X

Update game

object positioning

information

 X

Set the attenuation for

each audio object

X

Defining Event scope X

31

Chapter 6. What are Game Syncs?

What are Game Syncs? .. 32

Understanding States ... 32

Understanding Switches .. 34

Understanding RTPCs ... 35

Understanding Triggers ... 37

Understanding Arguments .. 38

Game Syncs- Roles and Responsibilities .. 38

What are Game Syncs?

32

What are Game Syncs?

After the initial game design is complete, you can start looking at how you

could use Wwise elements called Game Syncs to streamline and handle the

changes and alternatives that are part of the game. You can define which

of the five different kinds of game syncs you will need to achieve the best

results possible to enhance the visuals of the game.

• States—a change that occurs in game that affects the properties of

existing sounds, music, or motion on a global scale.

• Switches—a representation of the alternatives that exist for a particular

game element that may require completely new sounds, music, or

motion.

• RTPCs—properties that are mapped to variable game parameter values

in such a way that changes to the game parameter values modify the

properties themselves.

• Triggers—a response to a spontaneous occurrence in the game that

launches a stinger, which is a brief musical phrase that is superimposed

and mixed over the currently playing music.

• Arguments—a collection of similar argument values that have been

grouped together to form a particular category or outcome that exists in

game. The game dynamically determines which values are present and

in which order they fall to decide what piece of dialogue to play.

When you are building your game project, you have to juggle quality,

memory usage restrictions, and the time constraints that you face. Using

game syncs strategically can simplify your work, economize on memory,

and help to build a truly immersive game experience.

Understanding States

States are basically “mixer snapshots” or global offsets or adjustments

to the game audio and motion properties that represent changes in the

physical and environmental conditions in the game. Using states can

streamline the way you design your audio and motion, and help you

optimize your assets.

States as “mixer snapshots” allow for level of detail and control over the

resulting sound output and can be combined with multiple states with

expected results. When an object registers to multiple states, a single

property can be affected by multiple value changes. In this scenario, each

change of value is added up together. For example, when two states in two

different state groups have a volume change of -6 dB, and both become

active simultaneously, the resulting volume will be -12 dB.

What are Game Syncs?

33

When you create and define these “mixer snapshots”, you are really

creating different property sets for a sound, music, or motion object

without adding to memory or disk space usage. These property sets define

a set of rules that govern the playback of a sound during a given state (or

states). When you apply these property changes globally to many objects,

you can quickly create realistic soundscapes that better represent the audio

and enhance the game. By altering the properties of sounds, music, or

motion already playing, you are able to re-use your assets and save valuable

memory.

Example 6.1. Using States - Example

Let's say you want to simulate the sound treatment that occurs when a

character goes underwater. In this case you could use a state to modify

the volume and low pass filter for sounds that are already playing. These

property changes should create the sound shift needed to recreate how

gunfire or exploding grenades would sound when the character is under

water.

The following illustration demonstrates how the properties for the volume

and low pass filter for the gunfire and grenade sound objects are affected

when the underwater state is called by the game.

What are Game Syncs?

34

Understanding Switches

In Wwise, switches represent the different alternatives that exist for a

particular game object within the game. Sound, music, and motion objects

are organized and assigned to switches so that the appropriate sound

or motion object will play when a change is made from one alternative

to another in game. The Wwise objects that are assigned to a switch are

grouped into a switch container. When an Event signals a change, the

switch container verifies the switch and the correct sound, music, or

motion object is played.

What are Game Syncs?

35

Example 6.2. Using Switches - Example

Let's say you are creating a first-person shooter game, where the main

character can walk and run through a variety of different environments.

Within each environment, you have different ground surfaces, such as

concrete, grass, and dirt, and you want different footstep sounds for each

of these surfaces. In this case, you can create switches for the different

ground surfaces and then assign the different footstep sounds to the

appropriate switch. When the main character is walking on a concrete

surface, the “concrete” switch will become active and its corresponding

sounds will play. If the character then moves from a concrete surface to a

grassy surface, the “grass” switch will become active and its corresponding

sounds will play.

The following illustration demonstrates how the active switch determines

which footstep sound is played.

Understanding RTPCs

Real-time Parameter Controls (RTPCs) enable you to edit specific object

properties in real time based on real-time parameter value changes that

occur within the game. Using RTPCs, you can map the game parameters

to property values, and “automate” property changes to enhance the

What are Game Syncs?

36

realism of your game. The parameter values are displayed in a graph view,

where one axis represents either the switch group or the property values

in Wwise, and the other axis represents the in-game parameter values. By

mapping property values to game parameter values, you create an RTPC

curve that defines the overall relationship between the two parameters.

You can create as many curves as necessary to create a rich and immersive

experience for the players of your game.

Example 6.3. Using RTPCs - Example

Let's say you are creating a racing game. The volume and pitch of the

engine sounds need to fluctuate as the speed and RPM of the car rise and

fall. In this case, you can use RTPCs to map the pitch and volume level of a

car's engine sounds to the speed and RPM values of an in-game car. As the

car accelerates, the property values for pitch and volume will react based

on how you have mapped them.

The following illustration demonstrates how the volume is affected by

the speed of the racing car in the game, based on how it was mapped in

Wwise.

What are Game Syncs?

37

Understanding Triggers

Like all game syncs, a trigger is a Wwise element that is called by the game

and then defines a specific response in Wwise to accommodate what is

happening in the game. More specifically, in interactive music a trigger

responds to a spontaneous occurrence in the game and launches a stinger.

The stinger, which is a brief musical phrase that is superimposed and

mixed over the currently playing music, is a musical reaction to the game.

For example, when a ninja draws his weapon, you might want to insert

a musical sforzando-type effect over the action music already playing to

add even more impact to the scene. The game would call the trigger which

in turn would launch the stinger and your music clip would play over the

ongoing score.

Example 6.4. Using Triggers - Example

Let's say that you have created a fighting game where your main character

is a ninja fighter. At several points in the game your character goes into

action mode where he fights his enemies. When your character lands

a powerful kick, you want to place a music clip that will intensify the

auditory impact of that scene. To build your music for these sequences,

you will need to create a trigger, perhaps named “High Kick” to be called

at these points in the game. In addition, you will define the short music

segment that will provide a quick blast of brass to add some “kick”.

The following illustration demonstrates the trigger mechanism that plays a

stinger at a key point in the game.

What are Game Syncs?

38

Understanding Arguments

Many games today have an audio component that is dynamic, or driven

by the action that is taking place in game. To efficiently manage this type

of dynamic audio, the conditions and outcomes in a game can be pre-

defined in Wwise using arguments. Arguments represent the different

categories that exist in your game. For example, in a football game, the list

of arguments could include Teams, Players, and Actions. Each argument or

category also needs a set of corresponding values. In our football example,

the Teams argument could include argument values, such as Dallas,

Pittsburgh, New England, and so on.

The arguments and argument values are arranged into dialogue Events

where the game conditions are re-created. These conditions called

argument paths are then assigned to a particular voice object. As the

game is being played, the current argument values are matched with

those created in the dialogue Events in Wwise to determine what piece of

dialogue to play.

Example 6.5. Using Arguments - Example

Let's say you are creating a golf game that will have a play-by-play

commentary. You will need to create arguments for each of the different

categories in your game. Each argument will then need all the different

values that correspond to that category. For our golf game, we will need a

variety of arguments including Players, Clubs, Shots, Locations, Reactions,

and so on. The following table shows you how you could divide up some of

the different categories in a golf game into arguments and corresponding

argument values. After the arguments and argument values are defined,

you can start adding them to the dialogue Eventsthat are required for your

game.

Game Syncs- Roles and Responsibilities

The following table shows you which tasks related to game syncs are the

responsibility of the sound designer and which ones are the responsibility

of the programmer:

What are Game Syncs?

39

Table 6.1. Game Syncs- Roles and Responsibilities

Tasks Sound Designer

(Wwise)

Programmer (Game

Code/Tools)

Create Switch Groups

and Switches

X

Create State Groups

and States

X

Define State Transition

Time

X

Subscribe Switch

Containers to Switch

and State Groups

X

Setting up Triggers and

Arguments

X

Post State and Switch

information from the

Game Engine to the

Wwise Audio Engine

 X

40

Chapter 7. Creating Simulations

Creating Simulations ... 41

Creating Simulations

41

Creating Simulations

With all game projects, there is a great deal of experimenting that goes on

to make everything just right. To assist you with these tasks, Wwise has a

powerful simulation environment called the Soundcaster. The Soundcaster

can be used at any point in the development process to build audio and

motion simulations using any of the Wwise objects and Events in your

project.

You can use the Soundcaster for a variety of tasks, including:

• Prototyping and experimenting.

• Developing a proof of concept.

• Auditioning sound and music objects simultaneously.

• Profiling audio and motion in your game.

• Mixing and testing audio and motion.

Not only can you create simulations in Wwise using Wwise Events, sound,

motion, and music objects, but you can also connect to a game and create

simulations using the sounds, motion, and music triggered by the game

itself. The simulations you create can be saved as Soundcaster sessions

so that you can return to a simulation at any point in the development

process.

42

Chapter 8. Profiling and Troubleshooting

Profiling and Troubleshooting ... 43

Profiling and Troubleshooting

43

Profiling and Troubleshooting

One of the biggest challenges for game developers is to create rich and

immersive experiences for game players while respecting the limitations

and constraints of the various platforms. In Wwise, there are many ways

to tailor your game audio and motion to the various platforms. You can,

however, take it one step further by using Wwise's Game Profiler and

Game Object Profiler to test how your audio and motion performs on each

platform. These two sets of tools allow you to profile specific aspects of the

audio and motion in your game at any point in the production process on

any platform. You can connect to a remote game console and then capture

profiling information directly from the sound engine. By monitoring the

activities of the sound engine, you can detect and troubleshoot specific

problems related to memory, voices, streaming, effects, SoundBanks, and

so on. You can profile in game, use the Game Simulator and Soundcaster,

or use SoundFrame applications to profile prototypes even before they

have been integrated into your game.

To help you find the information you need, the Game Profiler layout is

divided into the following three views:

• Capture Log—a log that captures and records all information coming

from the sound engine.

• Performance Monitor—a graphical representation of the performance,

such as CPU, memory, and bandwidth, for each activity performed

by the sound engine. The information is displayed in real time as it is

captured from the sound engine.

• Advanced Profiler—a comprehensive set of sound engine metrics that

can help you monitor performance and troubleshoot problems.

The Game Object Profiler layout contains the following views:

• Game Object Explorer—the control center for the Wwise game object

profiling tools, where you select game objects and listeners to be

watched in real time.

• Game Object 3D Viewer—A three-dimensional visual representation of

game objects and listeners.

• Game Sync Monitor—A tool for analyzing RTPC values in real time.

During gameplay, graphs are drawn for the RTPC values that change for

watched game objects.

Because these views are so tightly integrated, you can locate problem areas,

determine which Events, actions, or objects are causing the problems,

determine how the sound engine is handling the different elements, and

then fix the problems quickly and efficiently.

44

Chapter 9. Understanding SoundBanks

Understanding SoundBanks .. 45

File Packager .. 45

Understanding SoundBanks

45

Understanding SoundBanks

To effectively manage the audio and motion components of a game, Wwise

puts all the audio and motion data for your game into banks. A bank is

basically a file that contains your game's audio and motion data, media,

or both. These banks are loaded into a game's platform memory at a

particular point in the game. By loading only what is necessary, you can

optimize the amount of memory that is being used for audio and motion

by each platform. Banks are the product of all your work and contain the

final audio and/or motion content that becomes part of your game.

In Wwise, there are two types of banks:

• Initialization bank—a special bank that contains all the general

information about a project, including information on the bus

hierarchy, and information on states, switches, RTPCs, and

Environmental effects. The Initialization bank is automatically created

when Wwise generates the SoundBanks. The Initialization bank is

usually loaded once at the beginning of your game so that all the general

project information is easily accessible during game play. By default, the

Initialization bank is named “Init.bnk”.

• SoundBank—a file that contains a combination of Event data, sound

and motion structure data, and/or media files. Unlike the Initialization

bank, SoundBanks are generally loaded and unloaded at different points

in the game to better utilize platform memory usage. Event and project

structure metadata can also be added to different SoundBanks than the

media allowing you to load media files only when they are absolutely

required. Because all platforms are different, Wwise allows you to easily

tailor the SoundBanks for each platform and generate the SoundBanks

for all platforms simultaneously. Wwise also provides you with tools for

troubleshooting any issues related to your SoundBanks to make sure

that you are respecting the limitations of the different platforms.

To help you work more efficiently, a SoundBank layout is available in

Wwise. This layout contains all the views you will need to create, manage,

and generate the SoundBanks for your project, including the SoundBank

Manager, SoundBank Editor, Project Explorer, and Event Viewer.

File Packager

The SoundBanks generated for a Wwise project as well as any streamed

media files can be grouped into one or more packages using the File

Packager standalone utility. A file package is a self-contained unit that

abstracts a file system, which means you can avoid some of the limitations

Understanding SoundBanks

46

of a platform's file system, including the limit on the length of filenames

as well as the actual number of files. File packages can also help you better

manage language versions as well as downloadable content that is made

available post release.

47

Chapter 10. The Wwise Sound Engine

The Wwise Sound Engine ... 48

The Wwise Sound Engine

48

The Wwise Sound Engine

Using Wwise, you can build astonishing sound, music, and motion

structures and package them into SoundBanks, but you also need a

powerful and reliable sound engine to deliver the sound and motion you

designed. At a very basic level, the Wwise sound engine manages and

processes all aspects of the audio and motion within your game in real

time. It was designed to be easily integrated into your game development

pipeline for inclusion in the final game.

Normally, these integration and processing tasks require significant

amounts of programming, but the Wwise sound engine dynamically

creates the processing pipeline, leaving developers free to customize the

engine in order to fit the specific needs of any game on any supported

platform.

Through its sophisticated behavior and tight integration with the Wwise

authoring application, the sound engine is also able to perform the

following functions:

• Handles common playback behaviors, including random and sequential

play, which are created and defined in the authoring application by the

sound designer.

• Handles fades and cross fades out-of-the-box that are created and fine-

tuned in the authoring application by the sound designer.

• Manages the priority of sound and motion objects using playback limits,

specific priority settings, and virtual voices all set by the sound designer

in the authoring application.

• Supports an unlimited number of environments out-of-the-box

through a simple API. In addition, because the sound engine creates and

destroys the environmental routing dynamically, it ensures a consistent

experience on all platforms and reduces the memory footprint and CPU

workload.

• Supports the naturally occurring conditions of obstruction and

occlusion when the source is partially or completely blocked by elements

within a game.

• Supports up to 8 different listeners in the game.

• Contains debugging instrumentation code that is exposed visually in

real time in the authoring application. As a result, the sound designer

can analyze the profiling output and take proper action in real time

while the game is running.

For more information about the capabilities of the Wwise sound engine,

refer to the Wwise SDK documentation.

The Wwise Sound Engine

49

Note

The Wwise sound engine uses a fully optimized software

based mixing pipeline on all platforms except the Wii. The

Wii implementation of the sound engine is slightly different

in that it uses the Wii DSP hardware for most audio mixing,

processing, and decoding of the native ADPCM hardware

format (GCADPCM). Some source plug-ins remain software-

based, such as Vorbis, Tone Generator, and SoundSeed Air,

but they still go to the Wii DSP hardware for sample-rate

conversion, filtering, and mixing.

50

Chapter 11. Listeners

Listeners ... 51

Multiple Listeners .. 51

Listeners - Roles and Responsibilities .. 51

Listeners

51

Listeners

A listener represents a microphone in the game. A listener has a position

and orientation in the game's 3D space. During game play, the coordinates

of the listener are compared with the game object's position, so that 3D

sounds associated with game objects can be assigned to the appropriate

speakers to mimic a real 3D environment. Programmers must ensure that

the listener's positional information is kept up to date; otherwise sounds

will be rendered through the wrong speakers.

Multiple Listeners

In a single-player game where you always see only one point of view in the

game, one listener is enough. However, if multiple players can play on the

same system, or if multiple views are displayed at the same time, each view

requires its own listener so audio is appropriately rendered for all of these

views. The Wwise sound engine supports up to eight listeners.

By default, every registered game object is assigned to the first listener

only. However, the programmer has the flexibility to dynamically assign or

unassign any game object from any listener.

There are many challenges to implementing audio for multiple listeners

because the positioning of sound sources doesn't always make sense in

relation to what each player is seeing. This is mostly caused by a game

using only one set of speakers to reproduce the 3D environment for

several players. Wwise offers a variety of tools and techniques to offset

this limitation so that the audio experience is as realistic as possible for

all players. For more information about how Wwise handles multiple

listeners, refer to the section “Integrating Listeners” in the SDK.

Listeners - Roles and Responsibilities

The following table shows you which tasks related to listeners are the

responsibility of the sound designer and which ones are the responsibility

of the programmer:

Listeners

52

Table 11.1. Listeners - Roles and Responsibilities

Tasks Sound Designer

(Wwise)

Programmer (Game

Code/Tools)

Setting the listener's

positional information

 X

Assigning game objects

to listeners

 X

Managing multiple

listeners

 X

53

Chapter 12. Division of Tasks Between Designer
and Programmer

Division of Tasks Between Designer and Programmer 54

Sound Designer Responsibilities ... 54

Audio Programmer Responsibilities .. 54

Project Planning .. 55

Division of Tasks Between

Designer and Programmer

54

Division of Tasks Between Designer and Programmer

As you have probably already figured out, Wwise takes an approach to

sound design and integration that is different from that of other sound

engines. More control is given to the sound designer, which means

repetitive and time consuming tasks often handled by developers are

reduced to a minimum, letting both sound designers and developers

concentrate on more interesting, creative work. Most dependencies have

been eliminated so that each group can focus on their core competencies

and work together more efficiently. Wwise recognizes two distinct roles

with specific tasks for each: sound designer and audio programmer.

Sound Designer Responsibilities

The sound designer is responsible for:

• Creating audio hierarchies and behaviors.

• Creating audio Events.

• Integrating audio Events into your world building application.

• Setting sound properties and sources.

• Defining sound positioning (3D).

• Determining audio signal routing and mixing aspects for all sounds.

• Assigning real time parameter controls and game states.

• Defining effect property sets for the various environments in your game.

• Defining volume and LPF obstruction and occlusion properties.

• SoundBank management and optimization.

• Customizing multiple platforms.

• Performing language localization.

Audio Programmer Responsibilities

The audio programmer is responsible for:

• Integrating the Wwise sound engine into the game engine.

• Integrating audio Events using code.

• Registering game objects that emit the sounds in your game.

• Calling AK::SoundEngine::PostEvent() methods to trigger Events that

contain one or several audio actions.

• Manage the loading and unloading of Soundbanks as specified by the

Sound Designer or by the game using the Soundbanks definition file

and File Packager Utility.

• Setting the positions of 3D game objects in relation to the listener's

coordinate system.

Division of Tasks Between

Designer and Programmer

55

• Triggering state and switch changes and updating real time parameter

controls.

• Setting the percentage of each environmental effect that is applied to the

sounds in your game.

• Calculating obstruction and occlusion values for each game object in

relation to the listener.

• Managing memory resources, including loading and unloading of

SoundBanks, handling streaming, registering of plug-ins, and so on.

• Writing source and effect plug-ins. The sound engine's plug-in

architecture allows game developers to expand Wwise's functionality to

meet their specific game requirements.

• Integrating SoundFrame into your development tools.

Project Planning

At the beginning of the project, audio programmers and sound designers

should meet to discuss the various resources that will be allocated for the

audio of the game title. These resources include, but are not limited to

memory, disk space, number of streams, and size of SoundBanks.

Based on game design and technological constraints, the designer and

developer must work together to decide:

• How Events will be integrated and triggered by the game engine.

• Project Hierarchy and Work Unit organization for Workgroups.

• Player perspective and Listener positioning.

• Soundbank loading/ unloading strategy.

• Music integration and special needs for interactive music.

• Which game parameters should be used as Real Time Parameter

Controls (RTPC).

• Which global elements of the game can drive the Mix and State

mechanisms.

• Which sound structures need a Switch mechanism.

56

Chapter 13. Conclusion

Conclusion ... 57

Conclusion

57

Conclusion

From its inception, Wwise has attempted to create a clear distinction

between the roles of the sound designer and the programmer. Each group

has its own core competencies, and should be able to focus on the tasks

that push game audio to the next level, enhancing the overall gaming

experience.

From this separation of tasks, came the five main components that make

up the core of Wwise:

• Audio objects

• Events

• Game Syncs

• Game objects

• Listeners

Each component falls under the responsibility of either the sound designer

or the programmer, as shown in the following illustration.

There are two components that are integral to both Wwise and the game:

Events and Game Syncs. These two components, which drive the audio in

your game, create the necessary bridge between the audio assets in Wwise

and the components managed in the game.

Wwise represents a paradigm shift in the way audio is developed and

integrated in video games. It does require game designers and developers

to approach their work in a new way, but it also allows them to work more

efficiently and to focus on their areas of expertise.

Conclusion

58

Now that you have a basic understanding of Wwise's approach to game

audio development, you are ready to jump in, and take full advantage of all

Wwise has to offer.

	Wwise 2012.1
	Table of Contents
	Chapter 1. Introducing Wwise
	Introducing Wwise
	The Wwise Production Pipeline
	The Wwise Project
	How Wwise Manages the Assets in Your Project
	Originals
	Platform Versions

	Chapter 2. Integrating Audio in your Game
	The Wwise Fundamental Approach

	Chapter 3. The Project Hierarchy
	The Project Hierarchy
	Understanding the Actor-Mixer Hierarchy
	Audio Objects
	Source Plug-ins
	Building a Hierarchy of Audio Objects
	Audio Objects - Roles and Responsibilities
	Understanding the Interactive Music Hierarchy
	Understanding the Master-Mixer Hierarchy

	Chapter 4. Understanding Events
	Understanding Events
	Action Events
	Dialogue Events
	Defining Event Scope
	Integrating Events into your Game
	Benefits of Using Wwise Events
	Events - Roles and Responsibilities

	Chapter 5. What are Game Objects?
	What are Game Objects?
	Registering Game Objects
	Scope - Game Object vs Global
	Benefits of Using Game Objects
	Game Objects - Roles and Responsibilities

	Chapter 6. What are Game Syncs?
	What are Game Syncs?
	Understanding States
	Understanding Switches
	Understanding RTPCs
	Understanding Triggers
	Understanding Arguments
	Game Syncs- Roles and Responsibilities

	Chapter 7. Creating Simulations
	Creating Simulations

	Chapter 8. Profiling and Troubleshooting
	Profiling and Troubleshooting

	Chapter 9. Understanding SoundBanks
	Understanding SoundBanks
	File Packager

	Chapter 10. The Wwise Sound Engine
	The Wwise Sound Engine

	Chapter 11. Listeners
	Listeners
	Multiple Listeners
	Listeners - Roles and Responsibilities

	Chapter 12. Division of Tasks Between Designer and Programmer
	Division of Tasks Between Designer and Programmer
	Sound Designer Responsibilities
	Audio Programmer Responsibilities
	Project Planning

	Chapter 13. Conclusion
	Conclusion

