Table of Contents

Binding a Game Parameter to a Built-In Parameter

The sound engine calculates a standard set of values that the sound designer may find useful to hook into to create dynamic audio and motion. These "built-in" parameters can be accessed by using the bind to built-in parameter mechanism and are updated internally each frame. No additional game programming is necessary to use Game Parameters that are bound to built in parameters.

[Note] Note

When an RTPC is bound to a built-in parameter, the sound engine updates the value for each game object. If the RTPC is used on a global Wwise object that has no game object association, such as a bus or bus effect, the default value will be used.

Available built-in parameters:

  • Distance

    The distance between the game object and the listener. In the case that multiple listeners and/or multiple positions are assigned to the game object, the value is taken to be the shortest distance between all listener and sound position combinations.

  • Azimuth

    The angle, in degrees, between the listener and the game object projected on to the horizontal plane. A value of 0 degrees indicates that the sound is directly in front of the listener, -90 degrees the sound is to the left, 90 degrees to the right, and +/- 180 degrees the sound is directly behind the listener.

    In the case that the game object has been assigned multiple listeners and/or sound positions, the value taken is the angle between the listener and sound position that are closest together.

  • Elevation

    The vertical angle with respect to the horizon in degrees, between the listener and the game object. A value of 0 degrees indicates that the sound is on the same horizontal plane as the listener; a value of 90 degrees indicates that the sound is directly above and -90 degrees indicates the sound is directly below.

    In the case that the game object has been assigned multiple listeners and/or sound positions, the value taken is the angle between the listener and sound position that are closest together.

  • Emitter Cone

    The Emitter Cone represents the 3D angle between the orientation vector of the emitter and the vector formed by the line between the emitter and the listener. A value of 0 degrees indicates that the emitter is directly facing the listener, and a value of 180 degrees indicates that the emitter is facing directly away from the listener.

    In the case that the game object has been assigned multiple listeners and/or sound positions, the value taken is the angle between the listener and sound position that are closest together.

  • Obstruction

    Obstruction provides access to the value set on the game object via the SetObjectObstructionAndOcclusion API.

    In the case that the game object has been assigned multiple listeners, the obstruction value taken is the one that has been assigned to the listener with the closest current sound position.

  • Occlusion

    Occlusion provides access to the value set on the game object via the SetObjectObstructionAndOcclusion API.

    In the case that the game object has been assigned multiple listeners, the occlusion value taken is the one that has been assigned to the listener with the closest current sound position.

  • Listener Cone

    The Listener Cone represents the 3D angle between the orientation vector of the listener and the vector formed by the line between the emitter and the listener. A value of 0 degrees indicates that the listener is directly facing the emitter, and a value of 180 degrees indicates that the listener is facing directly away from the emitter.

    In the case that the game object has been assigned multiple listeners and/or sound positions, the value taken is the angle between the listener and sound position that are closest together.

  • Diffraction

    Diffraction provides access to the diffraction angle calculated by Wwise Spatial Audio, when using sound propagation with rooms and portals.

    In order to receive this built-in parameter, the game object must have been registered with Spatial Audio, and the emitter and listener must be in separate Rooms connected by one or more Portals.

    Emitter game objects receive a value relating to their 'dry' diffraction; the divergence angle, in degrees, away from a straight-line path between the emitter and the listener. Room game objects that have been registered internally by Spatial Audio also receive a diffraction value, but relating instead to their 'wet' diffraction - the diffraction of the diffuse reservation field of sounds that are inside the Room. Wet diffraction is the divergence angle, in degrees, from the perpendicular to a Portal opening.

    In the case that there are multiple Portals and, therefore, multiple paths the sound can take to reach the listener, the smallest diffraction angle amongst the various paths is chosen.